Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epstein-Barr virus nuclear protein EBNA-3C interacts with the human metastatic suppressor Nm23-H1: A molecular link to cancer metastasis

Abstract

Epstein-Barr virus (EBV) is an oncogenic virus associated with a number of human malignancies including Burkitt lymphoma, nasopharyngeal carcinoma, lymphoproliferative disease and, though still debated, breast carcinoma. A subset of latent EBV antigens is required for mediating immortalization of primary B-lymphocytes. Here we demonstrate that the carboxy-terminal region of the essential latent antigen, EBNA-3C, interacts specifically with the human metastatic suppressor protein Nm23-H1. Moreover, EBNA-3C reverses the ability of Nm23-H1 to suppress the migration of Burkitt lymphoma cells and breast carcinoma cells. We propose that EBNA-3C contributes to EBV-associated human cancers by targeting and altering the role of the metastasis suppressor Nm23-H1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural motifs of Nm23-HI and EBNA-3C.
Figure 2: Epstein-Barr virus nuclear protein EBNA-3C associates with NM23-H1 in vitro.
Figure 3: Nm23-H1 and EBNA-3C interact in human 293 cells in vivo.
Figure 4: Nm23-H1 co-immunoprecipitates with EBNA-3C in stably transfected EBNA-3C expressing cell lines and in EBV-transformed lymphoblastoid cell lines.
Figure 5: Immunofluorescence analysis to determine the cellular localization of Nm23-H1 and EBNA-3C.
Figure 6: Motility of MDA-MB-435 breast carcinoma and BJAB cell lines in the presence of different chemoattractants.

Similar content being viewed by others

References

  1. Kieff, E. Epstein-Barr Virus and Its Replication, 2343–2397 (Lippincott-Raven, Philadelphia, Pennsylvania, 1996).

    Google Scholar 

  2. Rickinson, A.B. & Kieff, E. Epstein-Barr Virus, 2397–2447 (Lippincott-Raven, Philadelphia, Pennsylvania, 1996).

    Google Scholar 

  3. Bonnet, M. et al. Detection of Epstein-Barr virus in invasive breast cancers. J. Natl. Cancer Inst. 91, 1376–1381 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Brink, A.A., van Den Brule, A.J., van Diest, P. & Meijer, C.J. Re: Detection of Epstein-Barr Virus in invasive breast cancers. J. Natl. Cancer Inst. 92, 655 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Cohen, J.I., Wang, F., Mannick, J. & Kieff, E. Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc. Natl. Acad. Sci. USA 86, 9558–9562 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaye, K.M., Izumi, K.M. & Kieff, E. Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc. Natl. Acad. Sci. USA 90, 9150–9154 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tomkinson, B., Robertson, E. & Kieff, E. Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J. Virol. 67, 2014–2025 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Swaminathan, S., Tomkinson, B. & Kieff, E. Recombinant Epstein-Barr virus with small RNA (EBER) genes deleted transforms lymphocytes and replicates in vitro. Proc. Natl. Acad. Sci. USA 88, 1546–50 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reisman, D., Yates, J. & Sugden, B. A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components. Mol. Cell. Biol. 5, 1822–1832 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robertson, E.S. The Epstein-Barr Virus EBNA3 protein family as regulators of transcription. Epstein-Barr Virus Report 4, 143–150 (1997).

    Google Scholar 

  11. Mitchell, P.J. & Tjian, R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245, 371–378 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Sample, J. et al. Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J. Virol. 64, 4084–4092 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Vinson, C.R., Sigler, P.B. & McKnight, S.L. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246, 911–916 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Allday, M.J. & Farrell, P.J. Epstein-Barr virus nuclear antigen EBNA3C/6 expression maintains the level of latent membrane protein 1 in G1-arrested cells. J. Virol. 68, 3491–3498 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Marshall, D. & Sample, C. Epstein-Barr virus nuclear antigen 3C is a transcriptional regulator. J. Virol. 69, 3624–3630 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Robertson, E.S. et al. Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein Jκ. J. Virol. 69, 3108–3116 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Robertson, E.S., Lin, J. & Kieff, E. The amino-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ(κ). J. Virol. 70, 3068–3074 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Steeg, P.S., Bevilacqua, G., Pozzatti, R., Liotta, L.A. & Sobel, M.E. Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res. 48, 6550–6554 (1988).

    CAS  PubMed  Google Scholar 

  19. Lacombe, M.-L., Milon, L., Munier, A., Mehus, J.G. & Lambeth, D.O. The human Nm23/nucleoside diphosphate kinases. J. Bioenerg. Biomembr. 32, 247–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. de la Rosa, A., Williams, R.L. & Steeg, P.S. Nm23/nucleoside diphosphate kinase: toward a structural and biochemical understanding of its biological functions. Bioessays 17, 53–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Hartsough, M.T. & Steeg, P.S. Nm23/Nucleoside Diphosphate Kinase in Human Cancers. J. Bioenerg. Biomembr. 32, 301–308 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Leone, A. et al. Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells. Cell 65, 25–35 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Leone, A. et al. Evidence for nm23 RNA overexpression, DNA amplification and mutation in aggressive childhood neuroblastomas. Oncogene 8, 855–865 (1993).

    CAS  PubMed  Google Scholar 

  24. Lim, S., Lee, H.Y. & Lee, H. Inhibition of colonization and cell-matrix adhesion after nm23-H1 transfection of human prostate carcinoma cells. Cancer Lett. 133, 143–149 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Russell, R.L. et al. Relationship of nm23 to proteolytic factors, proliferation and motility in breast cancer tissues and cell lines. Br. J. Cancer 78, 710–717 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Webb, P.A., Perisic, O., Mendola, C.E., Backer, J.M. & Williams, R.L. The crystal structure of a human nucleoside diphosphate kinase, NM23-H2. J. Mol. Biol. 251, 574–587 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Martin, K.K. & Pilkington, G.J. Nm23: an invasion suppressor gene in CNS tumours? Anticancer Res 18, 919–26 (1998).

    CAS  PubMed  Google Scholar 

  28. Hailat, N. et al. High levels of p19/nm23 protein in neuroblastoma are associated with advanced stage disease and with N-myc gene amplification. J. Clin. Invest. 88, 341–345 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. MacDonald, N.J., de la Rosa, A. & Steeg, P.S. The potential roles of nm23 in cancer metastasis and cellular differentiation. Eur. J. Cancer 31A, 1096–1100 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K. & Elledge, S.J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Speck, P. & Longnecker, R. Infection of Breast Epithelial Cells With Epstein-Barr Virus Via Cell-to-Cell Contact. J. Natl. Cancer Inst. 92, 1849–1851 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, B. & Sample, C.E. Epstein-barr virus nuclear antigen 3C activates the latent membrane protein 1 promoter in the presence of Epstein-Barr virus nuclear antigen 2 through sequences encompassing an spi-1/Spi-B binding site. J. Virol. 74, 5151–5160 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leone, A., Flatow, U., VanHoutte, K. & Steeg, P.S. Transfection of human nm23-H1 into the human MDA-MB-435 breast carcinoma cell line: effects on tumor metastatic potential, colonization and enzymatic activity. Oncogene 8, 2325–2333 (1993).

    CAS  PubMed  Google Scholar 

  34. Wang, L., Patel, U., Ghosh, L., Chen, H.C. & Banerjee, S. Mutation in the nm23 gene is associated with metastasis in colorectal cancer. Cancer Res. 53, 717–20 (1993); erratum: 53, 3652 (1993).

    CAS  PubMed  Google Scholar 

  35. Labrecque, L.G., Barnes, D.M., Fentiman, I.S. & Griffin, B.E. Epstein-Barr virus in epithelial cell tumors: a breast cancer study. Cancer Res. 55, 39–45 (1995).

    CAS  PubMed  Google Scholar 

  36. Glaser, S.L., Ambinder, R.F., DiGiuseppe, J.A., Horn-Ross, P.L. & Hsu, J.L. Absence of Epstein-Barr virus EBER-1 transcripts in an epidemiologically diverse group of breast cancers. Int. J. Cancer 75, 555–558 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Freije, J.M., MacDonald, N.J. & Steeg, P.S. Nm23 and tumour metastasis: basic and translational advances. Biochem. Soc. Symp. 63, 261–271 (1998).

    CAS  PubMed  Google Scholar 

  38. Wagner, P.D., Steeg, P.S. & Vu, N.D. Two-component kinase-like activity of nm23 correlates with its motility-suppressing activity. Proc. Natl. Acad. Sci. USA 94, 9000–9005 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kantor, J.D., McCormick, B., Steeg, P.S. & Zetter, B.R. Inhibition of cell motility after nm23 transfection of human and murine tumor cells. Cancer Res. 53, 1971–1913 (1993).

    CAS  PubMed  Google Scholar 

  40. Liu, F., Qi, H.L. & Chen, H.L. Effects of all-trans retinoic acid and epidermal growth factor on the expression of nm23-H1 in human hepatocarcinoma cells. J. Cancer Res. Clin. Oncol. 126, 85–90 (2000).

    CAS  PubMed  Google Scholar 

  41. Miller, W.E., Earp, H.S. & Raab-Traub, N. The Epstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor. J. Virol. 69, 4390–4398 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Albelda, S.M. et al. Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res. 50, 6757–6764 (1990).

    CAS  PubMed  Google Scholar 

  43. Filardo, E.J., Brooks, P.C., Deming, S.L., Damsky, C. & Cheresh, D.A. Requirement of the NPXY motif in the integrin beta 3 subunit cytoplasmic tail for melanoma cell migration in vitro and in vivo. J. Cell Biol. 130, 441–450 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Huang, S., Stupack, D., Liu, A., Cheresh, D. & Nemerow, G.R. Cell growth and matrix invasion of EBV-immortalized human B lymphocytes is regulated by expression of alphav integrins [In Process Citation]. Oncogene 19, 1915–1923 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Hajra, K.M., Ji, X. & Fearon, E.R. Extinction of E-cadherin expression in breast cancer via a dominant repression pathway acting on proximal promoter elements. Oncogene 18, 7274–7279 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. MacDonald, N.J. et al. A serine phosphorylation of Nm23, and not its nucleoside diphosphate kinase activity, correlates with suppression of tumor metastatic potential. J. Biol. Chem. 268, 25780–25789 (1993).

    CAS  PubMed  Google Scholar 

  47. Cotter, M.A., 2nd & Robertson, E.S. Modulation of histone acetyltransferase activity through interaction of Epstein-Barr nuclear antigen 3C with prothymosin α. Mol. Cell Biol. 20, 5722–5735 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gulley, M.L., Raphael, M., Lutz, C.T., Ross, D.W. & Raab-Traub, N. Epstein-Barr virus integration in human lymphomas and lymphoid cell lines. Cancer 70, 185–191 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Kieff for the EBNA-3C reagents; V. Deretic and J. Poschet for their support and their use of his fluorescence microscopy system; E. Fearon for the MDA-MB-435 cell line; P.S. Steeg and M.T. Hartstough for the pET3C-NM23H1 and pCMV-NM23-H1 constructs; and E. Postel for the NM23-H2 construct. This work was supported by grants from the Leukemia and Lymphoma Society of America and the National Cancer Institute CA072150-01 (to E.S.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erle S. Robertson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanian, C., Cotter, M. & Robertson, E. Epstein-Barr virus nuclear protein EBNA-3C interacts with the human metastatic suppressor Nm23-H1: A molecular link to cancer metastasis. Nat Med 7, 350–355 (2001). https://doi.org/10.1038/85499

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85499

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing