Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Perturbation of CD4+ and CD8+ T-cell repertoires during progression to AIDS and regulation of the CD4+ repertoire during antiviral therapy

Abstract

The T-cell antigen receptor (TCR) repertoire was studied longitudinally by analyzing the varying lengths of the beta chain CDR3 hypervariable region during the course of HIV-1 infection and following combination antiretroviral therapy. Drastic restrictions in CD8+ T-cell repertoire usage were found at all stages of natural progression and persisted during the first six months of treatment. In contrast, significant CD4+ T-cell repertoire perturbations were not found in early stages of infection but correlated with progression to AIDS. Out of ten patients presenting with pretreatment perturbations, normalization of the CD4+ repertoire was observed in eight good responders, but not in two cases of unsuccessful therapy. These results indicate that, besides CD4+ cell count rise, an efficient control of HIV replication may allow qualitative modifications of the CD4+ repertoire balance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lane, H.C. et al. Qualitative analysis of immune function in patients with the acquired immunodeficiency syndrome: Evidence for a selective defect in soluble antigen recognition. N. Engl. J. Med. 313, 79–84 (1985).

    Article  CAS  Google Scholar 

  2. Roglic, M., Macphee, R.D., Duncan, S.R., Sattler, F.R. & Theophilopoulos, A.N. T cell receptor (TCR) BV gene repertoires and clonal expansions of CD4 cells in patients with HIV infections.Clin. Exp. Immunol. 107,21–30 (1997).

    Article  CAS  Google Scholar 

  3. Fauci, A.S. Multifactorial nature of human immunodeficiency virus disease: Implications for therapy. Science 262, 1011–1018 (1993).

    Article  CAS  Google Scholar 

  4. Perelson, A.S. et al. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387,188–191 (1997).

    Article  CAS  Google Scholar 

  5. Connors, M. et al. HIV-1 infection induces changes in CD4+ T-cell phenotype and depletions within the CD4+ T-cell repertoire that are not immediately restored by antiviral or immune-based therapies. Nature Med. 3,533–540 (1997).

    Article  CAS  Google Scholar 

  6. Davis, M.M. & Bjorkman, P.J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402(1988).

    Article  CAS  Google Scholar 

  7. Rowen, L., Koop, B.F. & Hood, L. The complete 685-kilobase DNA sequence of the human beta T cell receptor locus. Science 272,1755–1762 (1996).

    Article  CAS  Google Scholar 

  8. Kepler, T.B., Borrero, M., Rugerio, B., McCray, S.K. & Clarke, S.H. Interdependence of N nucleotide addition and recombination site choice in V(D)J rearrangement. J. Immunol. 157,4451–4457(1996).

  9. Jores, R. & Meo, T. Few V gene segments dominate the T cell receptor beta-chain repertoire of the human thymus. J. Immunol. 151, 6110–6122(1993).

  10. Pannetier, C. et al. The sizes of the CDR3 hypervariable regions of the murine T-cell receptor beta chains vary as a function of the recombined germ-line segments. Proc. Natl. Acad. Sci. USA 90, 4319–323 (1993).

    Article  CAS  Google Scholar 

  11. Carmichael, A., Jin, X., Sissons, P. & Borysiewicz, L. Quantitative analysis of the human immunodeficiency virus type 1 (HIV-1 )-specific cytotoxic T lymphocyte (CTL) response at different stages of HIV-1 infection: Differential CTL responses to HIV-1 and Epstein-Barr virus in late disease. J. Exp. Med. 177, 249–256 (1993).

    Article  CAS  Google Scholar 

  12. Bahadoran, P. et al. CD4+ T cells of human immunodeficiency virus-infected infants. Eur. J. Immunol. 23, 2041–2044 (1993).

    Article  CAS  Google Scholar 

  13. Posnett, D.N., Kabak, S., Hodtsev, A.S., Goldberg, E.A. & Asch, A. T-cell antigen receptor V beta subsets are not preferentially deleted in AIDS. AIDS 7,625–631 (1993).

    Article  CAS  Google Scholar 

  14. Pannetier, C., Even, J. & Kourilsky, P. T-cell repertoire diversity and clonal expansions in normal and clinical samples. Immunol. Today 16, 176–181 (1995).

    Article  CAS  Google Scholar 

  15. Jorgensen, J.L., Esser, U., de St. Groth, B.F., Reay, P.A., & Davis, M.M. Mapping T-cell re-ceptor-peptide contacts by variant peptide immunization of single-chain transgenics.. Nature 355, 224–230 (192).

    Article  Google Scholar 

  16. Akolkar, P.N., Gulwani-Akolkar, B., Pergolizzi, R., Bigler, R.D. & Silver, J. Influence of HLA genes on T cell receptor V segment frequencies and expression levels in peripheral blood lymphocytes. J. Immunol. 150, 2761–2773 (1993).

    CAS  PubMed  Google Scholar 

  17. Genevee, C. et al. An experimentally validated panel of subfamily-specific oligonu-cleotide primers (V alpha 1 -w29/V beta 1 -w24) for the study of human T cell receptor variable V gene segment usage by polymerase chain reaction. Eur. J. Immunol. 22 1261–1269 (1992).

    Article  CAS  Google Scholar 

  18. Malhotra, U., Spielman, R. & Concannon, P. Variability in T cell receptor V beta gene usage in human peripheral blood lymphocytes. Studies of identical twins, siblings, and insulin-dependent diabetes mellitus patients. J. Immunol. 149 1802–1808 (1992).

    CAS  PubMed  Google Scholar 

  19. Levraud, J.P., Pannetier, C., Langlade-Demoyen, P., Brichard, V. & Kourilsky, P. Recurrent T cell receptor rearrangements in the cytotoxic T lymphocyte response in vivo against the p815 murine tumor. J. Exp. Med. 183, 439–449 (1996).

    Article  CAS  Google Scholar 

  20. Fitzgerald, J.E. et al. Analysis of clonal CD8+ T cell expansions in normal individuals and patients with rheumatoid arthritis. J. Immunol. 154, 3538–3547 (1995).

    CAS  PubMed  Google Scholar 

  21. Mellors, J.W. et al. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272, 1167–1170 (1996).

    Article  CAS  Google Scholar 

  22. Musette, P. et al. The J beta segment of the T cell receptor contributes to the V beta-specific T cell expansion caused by staphylococcal enterotoxin B and Urtica dioica super-antigens. Eur. J. Immunol. 26, 618–622 (1996).

    Article  CAS  Google Scholar 

  23. Posnett, D.N., Sinha, R., Kabak, S. & Russo, C. Clonal populations of T cells in normal elderly humans: The T cell equivalent to “benign monoclonal gammapathy”. J. Exp. Med 179, 609–618 (1994).

    Article  CAS  Google Scholar 

  24. Morley, J.K., Batliwalla, F.M., Hingorani, R. & Gregersen, P.K. Oligoclonal CD8+ T cells are preferentially expanded in the CD57+ subset. J. Immunol. 154, 6182–6190 (1995).

    CAS  Google Scholar 

  25. Schwab, R. et al. Expanded CD4+ and CD8+ T cell clones in elderly humans. J. Immunol. 158, 4493–499 (1997).

    CAS  PubMed  Google Scholar 

  26. Hadida, F. et al. Carboxyl-terminal and central regions of human immunodeficiency virus-1 NEF recognized by cytotoxic T lymphocytes from lymphoid organs: An in vitro limiting dilution analysis. J. Clin. Invest. 89, 53–60 (1992).

    Article  CAS  Google Scholar 

  27. Haas, G. et al. Dynamics of viral variants in HIV-1 Nef and specific cytotoxic T lymphocytes in vivo. J. Immunol. 157, 4212–4221 (1996).

    CAS  PubMed  Google Scholar 

  28. Kalams, S.A. et al. Longitudinal analysis of T cell receptor (TCR) gene usage by human immunodeficiency virus 1 envelope-specific cytotoxic T lymphocyte clones reveals a limited TCR repertoire. J. Exp. Med 179, 1261–1271 (1994).

    Article  CAS  Google Scholar 

  29. Pantaleo, G. et al. Major expansion of CD8+ T cells with a predominant V beta usage during the primary immune response to HIV. Nature 370, 463–467 (1994).

    Article  CAS  Google Scholar 

  30. Tanchot, C., Lemonnier, F.A., Pérarneau, B., Freitas, A.A., Rocha, B. Differential recruitment for survival and proliferation of CD8 naive and memory T cells. Science 276, 2057–2062 (1997).

    Article  CAS  Google Scholar 

  31. Sprent, J., Tough, D.F. & Sun, S. Factors controlling the turnover of T memory cells. Immunol. Rev. 156, 79–85 (1997).

    Article  CAS  Google Scholar 

  32. Neumann, A.U.N. & Gorochov, G. HIV antivirals and immune recovery [letter].Nature Med. 3, 703–704 (1997).

    Article  CAS  Google Scholar 

  33. Autran, B. et al. Positive effects of combined anti-retroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 277, 112–116 (1997).

    Article  CAS  Google Scholar 

  34. Ho, D.D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  CAS  Google Scholar 

  35. Gorochov, G. et al. Oligoclonal expansion of CD8+ CD57+ T cells with restricted T-cell receptor beta chain variability after bone marrow transplantation. Blood 83, 587–595 (1994).

    CAS  PubMed  Google Scholar 

  36. Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S. & Foeller, C. Sequences of proteins of immunological interest. (National Institute of Health, Bethesda, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Gorochov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorochov, G., Neumann, A., Kereveur, A. et al. Perturbation of CD4+ and CD8+ T-cell repertoires during progression to AIDS and regulation of the CD4+ repertoire during antiviral therapy. Nat Med 4, 215–221 (1998). https://doi.org/10.1038/nm0298-215

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0298-215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing