Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations

Abstract

Although the process of mammary tumorigenesis requires multiple genetic events, it is unclear to what extent carcinogenesis proceeds through preferred secondary pathways following a specific initiating oncogenic event. Similarly, the extent to which established mammary tumors remain dependent on individual mutations for maintenance of the transformed state is unknown. Here we use the tetracycline regulatory system to conditionally express the human c-MYC oncogene in the mammary epithelium of transgenic mice. MYC encodes a transcription factor implicated in multiple human cancers. In particular, amplification and overexpression of c-MYC in human breast cancers is associated with poor prognosis, although the genetic mechanisms by which c-MYC promotes tumor progression are poorly understood1,2. We show that deregulated c-MYC expression in this inducible system results in the formation of invasive mammary adenocarcinomas, many of which fully regress following c-MYC deinduction. Approximately half of these tumors harbor spontaneous activating point mutations in the ras family of proto-oncogenes with a strong preference for Kras2 compared with Hras1. Nearly all tumors lacking activating ras mutations fully regressed following c-MYC deinduction, whereas tumors bearing ras mutations did not, suggesting that secondary mutations in ras contribute to tumor progression. These findings demonstrate that c-MYC-induced mammary tumorigenesis proceeds through a preferred secondary oncogenic pathway involving Kras2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chronic induction of c-MYC in the mammary epithelium of MTB/TOM mice results in reversible hyperplastic lesions.
Figure 2: MYC transgene expression is required for maintenance of established mammary tumors.
Figure 3: Non-regressing tumors downregulate c-Myc pathways.

Similar content being viewed by others

References

  1. Guerin, M., Barrois, M., Terrier, M.J., Spielmann, M. & Riou, G. Overexpression of either c-myc or c-erbB-2/neu proto-oncogenes in human breast carcinomas: correlation with poor prognosis. Oncogene Res. 3, 21–31 (1988).

    CAS  Google Scholar 

  2. Varley, J.M., Swallow, J.E., Brammar, W.J., Whittaker, J.L. & Walker, R.A. Alterations to either c-erbB-2(neu) or c-myc proto-oncogenes in breast carcinomas correlate with poor short-term prognosis. Oncogene 1, 423–430 (1987).

    CAS  Google Scholar 

  3. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    Article  CAS  Google Scholar 

  4. Murphy, W. et al. A translocated human c-myc oncogene is altered in a conserved coding sequence. Proc. Natl. Acad. Sci. USA 83, 2939–2943 (1986).

    Article  CAS  Google Scholar 

  5. Marhin, W.W., Chen, S., Facchini, L.M., Fornace, A.J., Jr. & Penn, L.Z. Myc represses the growth arrest gene gadd45. Oncogene 14, 2825–2834 (1997).

    Article  CAS  Google Scholar 

  6. Wagner, A.J., Meyers, C., Laimins, L.A. & Hay, N. c-myc induces the expression and activity of ornithine decarboxylase. Cell Growth Differ. 4, 879–883 (1993).

    CAS  Google Scholar 

  7. Pena, A. et al. Regulation of human ornithine decarboxylase expression by the c-Myc.Max protein complex. J. Biol. Chem. 268, 27277–27285 (1993).

    CAS  Google Scholar 

  8. Bello-Fernandez, C., Packham, G. & Cleveland, J.L. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc. Natl. Acad. Sci. USA 90, 7804–7808 (1993).

    Article  CAS  Google Scholar 

  9. Leder, A., Pattengale, P.K., Kuo, A., Stewart, T.A. & Leder, P. Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development. Cell 45, 485–495 (1986).

    Article  CAS  Google Scholar 

  10. Cardiff, R.D., Sinn, E., Muller, W. & Leder, P. Transgenic oncogene mice. Tumor phenotype predicts genotype. Am. J. Pathol. 139, 495–501 (1991).

    CAS  PubMed Central  Google Scholar 

  11. Coller, H.A. et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc. Natl. Acad. Sci. USA 97, 3260–3265 (2000).

    Article  CAS  Google Scholar 

  12. Nishikura, K. & Murray, J.M. The mechanism of inactivation of the normal c-myc gene locus in human Burkitt lymphoma cells. Oncogene 2, 493–498 (1988).

    CAS  Google Scholar 

  13. Sinn, E. et al. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49, 465–475 (1987).

    Article  CAS  Google Scholar 

  14. Andres, A.C. et al. Ha-ras and c-myc oncogene expression interferes with morphological and functional differentiation of mammary epithelial cells in single and double transgenic mice. Genes Dev. 2, 1486–1495 (1988).

    Article  CAS  Google Scholar 

  15. Chin, L. et al. Essential role for oncogenic ras in tumour maintenance. Nature 400, 468–472 (1999).

    Article  CAS  Google Scholar 

  16. Felsher, D.W. & Bishop, J.M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    Article  CAS  Google Scholar 

  17. Huettner, C.S., Zhang, P., Van Etten, R.A. & Tenen, D.G. Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nature Genet. 24, 57–60 (2000).

    Article  CAS  Google Scholar 

  18. Pelengaris, S., Littlewood, T., Khan, M., Elia, G. & Evan, G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell 3, 565–577 (1999).

    Article  CAS  Google Scholar 

  19. Ewald, D. et al. Time-sensitive reversal of hyperplasia in transgenic mice expressing SV40 T antigen. Science 273, 1384–1386 (1996).

    Article  CAS  Google Scholar 

  20. Land, H., Parada, L.F. & Weinberg, R.A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    Article  CAS  Google Scholar 

  21. Bos, J.L. ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989); erratum: 50, 1352 (1990).

    CAS  Google Scholar 

  22. Zuber, J. et al. A genome-wide survey of ras transformation targets. Nature Genet. 24, 144–152 (2000).

    Article  CAS  Google Scholar 

  23. Miyakis, S., Sourvinos, G. & Spandidos, D.A. Differential expression and mutation of the ras family genes in human breast cancer. Biochem. Biophys. Res. Commun. 251, 609–612 (1998).

    Article  CAS  Google Scholar 

  24. Marquis, S.T. et al. The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Nature Genet. 11, 17–26 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Master for contributions to statistical analysis and C. Sarkisian, D. Stairs and L.J. Huber for helpful comments on the manuscript. This work was supported by grants from the Susan G. Komen Breast Cancer Foundation, the Concert for the Cure, the National Cancer Institute, the WISE Study, and the U.S. Army Breast Cancer Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis A. Chodosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Cruz, C., Gunther, E., Boxer, R. et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med 7, 235–239 (2001). https://doi.org/10.1038/84691

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84691

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing