Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic correction of sickle cell disease: Insights using transgenic mouse models

Abstract

Sickle cell disease is a hereditary disorder characterized by erythrocyte deformity due to hemoglobin polymerization. We assessed in vivo the potential curative threshold of fetal hemoglobin in the SAD transgenic mouse model of sickle cell disease using mating with mice expressing the human fetal Aγ-globin gene. With increasing levels of HbF, AγSAD mice showed considerable improvement in all hematologic parameters, morphopathologic features and life span/survival. We established the direct therapeutic effect of fetal hemoglobin on sickle cell disease and demonstrated correction by increasing fetal hemoglobin to about 9–16% in this mouse model. This in vivo study emphasizes the potential of the SAD mouse models for quantitative analysis of gene therapy approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Globin chain analysis of AγSAD mice.
Figure 2: Immunofluorescence staining of AγSAD mice RBCs with antibody against γ globin chain.
Figure 3: Erythrocyte separation on a Stractan density discontinuous gradient.

Similar content being viewed by others

References

  1. Bertles, J.F. & Milner, P.F. Irreversibly sickled erythrocytes: a consequence of the heterogeneous distribution of hemoglobin types in sickle-cell anemia. J. Clin. Invest. 47, 1731– 1741 (1968).

    Article  CAS  Google Scholar 

  2. Charache, S. et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. N. Engl. J. Med. 332, 1317–1322 (1995).

    Article  CAS  Google Scholar 

  3. Dover, G.J., Brusilow, S. & Charache, S. Induction of fetal hemoglobin production in subjects with sickle cell anemia by oral sodium phenylbutyrate. Blood 84, 339–343 (1994).

    CAS  Google Scholar 

  4. McCaffrey, P.G., Newsome, D.A., Fibach, E., Yoshida, M. & Su, M.S.-S., Induction of γ-globin by histone deacetylase inhibitors. Blood 90, 2075–2083 (1997).

    CAS  Google Scholar 

  5. Perrine, S.P. et al. A short-term trial of butyrate to stimulate fetal-globin-gene expression in the β-globin disorders. N. Engl. J. Med. 328, 81–86 (1993).

    Article  CAS  Google Scholar 

  6. Stamatoyannopoulos, G. et al. Fetal hemoglobin induction by acetate, a product of butyrate catabolism. Blood 84, 3198– 3204 (1994).

    CAS  Google Scholar 

  7. Popp, R.A. et al. A transgenic mouse model of hemoglobin S Antilles disease. Blood 89, 4204–4212 ( 1997).

    CAS  Google Scholar 

  8. Paszty, C. et al. Transgenic knockout mice with exclusively human sickle hemoglobin and sickle cell disease. Science 278, 876 –878 (1997).

    Article  CAS  Google Scholar 

  9. Ryan, T.M., Ciavatta, D.J. & Townes, T.M. Knockout-transgenic mouse model of sickle cell disease . Science 278, 873–876 (1997).

    Article  CAS  Google Scholar 

  10. Fabry, M.E. et al. A second generation transgenic mouse model expressing both hemoglobin S (HbS) and HbS-Antilles results in increased phenotypic severity . Blood 86, 2419–2428 (1995).

    CAS  Google Scholar 

  11. Greaves, D.R. et al. A transgenic mouse model of sickle cell disorder. Nature 343, 183–185 ( 1990).

    Article  CAS  Google Scholar 

  12. Trudel, M. et al. Towards a transgenic mouse model of sickle cell disease: hemoglobin SAD. EMBO J. 10, 3157–3165 (1991).

    Article  CAS  Google Scholar 

  13. De Paepe, M.E. & Trudel, M. The transgenic SAD mouse: a model of human sickle cell glomerulopathy. Kidney Int. 46, 1337–1345 ( 1994).

    Article  CAS  Google Scholar 

  14. Blouin, M.-J., De Paepe, M. & Trudel, M. Altered hematopoiesis in murine sickle cell disease . Blood 94, 1451–1459 (1999).

    CAS  Google Scholar 

  15. Trudel, M. et al. Sickle cell disease of transgenic SAD mice. Blood 84, 3189–3197 ( 1994).

    CAS  Google Scholar 

  16. De Franceschi, L., Saadane, N., Trudel, M., Brugnara, C. & Beuzard, Y. Treatment with oral clotrimazole blocks Ca2+-activated K+transport and reverses erythrocytes dehydration in transgenic SAD mice. J. Clin. Invest. 93, 1670–1676 (1994).

    Article  CAS  Google Scholar 

  17. Enver, T., Ebens, A.J., Forrester, W.C. & Stamatoyannopoulos, G. The human β-globin locus activation region alters the developmental fate of a human fetal globin gene in transgenic mice. Proc. Natl. Acad. Sci. USA 86, 7033–7037 ( 1989).

    Article  CAS  Google Scholar 

  18. Stamatoyannopoulos, G., Josephson, B., Zhang, J.-W. & Li, Q. Developmental regulation of human gamma-globin genes in transgenic mice. Mol. Cell. Biol. 13, 7636–7644 (1993).

    Article  CAS  Google Scholar 

  19. Powars, D.R., Weiss, J.N., Chan, L.S. & Schroeder, W.A. Is there a threshold level of fetal hemoglobin that ameliorates morbidity in sickle cell anemia? Blood 63, 921–926 (1984).

    CAS  Google Scholar 

  20. Serjeant, G.R. Irreversibly sickled cells and splenomegaly in sickle-cell anaemia. Br. J. Haematol. 19, 635–641 (1970).

    Article  CAS  Google Scholar 

  21. Platt, O.S. et al. Pain in sickle cell disease: Rates and risk factors. N. Engl. J. Med. 325, 11–16 (1991).

    Article  CAS  Google Scholar 

  22. Platt, O.S. et al. Mortality in sickle cell disease: Life expectancy and risk factors for early death. N. Engl. J. Med. 330, 1639–1644 (1994).

    Article  CAS  Google Scholar 

  23. Noguchi, C.T., Rodgers, G.P., Serjeant, G. & Schechter, A.N. Levels of fetal hemoglobin necessary for treatment of sickle cell disease . N. Engl. J. Med. 318, 96– 99 (1988).

    Article  CAS  Google Scholar 

  24. Croizat, H. & Nagel, R.L. Circulating BFU-E in sickle cell anemia: Relationship to percent fetal hemoglobin and BPA-like activity. Exp. Hematol. 16, 946–949 (1988).

    CAS  Google Scholar 

  25. Croizat, H., Billett, H.H. & Nagel, R.L. Heterogeneity in the properties of burst-forming units of erythroid lineage in sickle cell anemia: DNA synthesis and burst-promoting activity production is related to peripheral hemoglobin F levels. Blood 75, 1006–1010 ( 1990).

    CAS  Google Scholar 

  26. Croizat, H. & Nagel, R.L. Circulating cytokines response and the level of erythropoiesis in sickle cell anemia. Am. J. Hematol. 60, 105–115 ( 1999).

    Article  CAS  Google Scholar 

  27. Alter, B.P., Goff, S.C., Efremov, G.D., Gravely, M.E. & Huisman, T.H.J. Globin chain electrophoresis: A new approach to the determination of the Gγ/Aγ ratio in fetal haemoglobin and to studies of globin synthesis . Br. J. Haematol. 44, 527– 534 (1980).

    Article  CAS  Google Scholar 

  28. Schroeder, W.A., Shelton, J.B., Shelton, J.R. & Auynh, V. High performance liquid chromatographic separation of the globin chains of non-human hemoglobins. Hemoglobin 9, 461 –482 (1985).

    Article  CAS  Google Scholar 

  29. Ou, C.-N. & Rognerud, C.L. Rapid analysis of hemoglobin variants by cation-exchange HPLC. Clin. Chem. 39, 820–824 (1993).

    CAS  Google Scholar 

  30. Trudel, M. & Costantini, F. A 3′ enhancer contributes to the stage-specific expression of the human β-globin gene. Genes Dev. 1, 954–961 ( 1987).

    Article  CAS  Google Scholar 

  31. Trudel, M., Magram, J., Bruckner, L. & Costantini, F. UpstreamGγ-globin and downstream β-globin gene domain in human erythroid cells. Mol. Cell. Biol. 7, 4024 –4029 (1987).

    Article  CAS  Google Scholar 

  32. Stamatoyannopoulos, G. et al. Monoclonal antibodies specific for globin chains. Blood 61, 530–539 ( 1983).

    CAS  Google Scholar 

  33. Corash, L.M., Piomelli, S., Chen, H.C., Seaman, C. & Gross, E. Separation of erythrocytes according to age on a simplified density gradient. J. Lab. Clin. Med. 84, 147–151 (1974).

    CAS  Google Scholar 

  34. Bunn, H.F. & Forget, B.G. in Hemoglobin: Molecular Genetic and Clinical Aspects 690 (W.B. Saunders, Philadelphia, 1986).

  35. Kim, Y.R. & Ornstein, L. Isovolumentric sphering of erythrocytes for more accurate and precise cell measurements by flow cytometry. Cytometry 3, 419–427 ( 1983).

    Article  CAS  Google Scholar 

  36. Tycko, D.H., Metz, M.H., Epstein, E.A. & Grinbaum, A. Flow cytometric light scattering measurement of red cell volume and hemoglobin concentration. Appl. Optics 24, 1355– 1365 (1985).

  37. Mohandas, N. et al. Accurate and independent measurement of volume and hemoglobin concentration of individual red cells by laser light scattering. Blood 68, 506–513 ( 1986).

    CAS  Google Scholar 

  38. Mohandas, N. et al. Automated quantitation of cell density distribution and hyperdense cell fraction in RBC disorders. Blood 74, 442–447 (1989).

    CAS  Google Scholar 

  39. Brugnara, C. et al. Automated reticulocyte counting and measurement of reticulocyte cellular indices: Evaluation of the Miles H*3 blood analyzer . Am. J. Clin. Pathol. 102, 623– 632 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Desforges for technical assistance. This work was supported by the Medical Research Council of Canada to M.T., the National Institutes of Health to G.S. and a Fonds pour la formation de chercheurs et d'aide a la recherche studentship to H.B.; M.T. is a chercheur-boursier of the Fonds de la Recherche en Santé due Québec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Trudel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blouin, MJ., Beauchemin, H., Wright, A. et al. Genetic correction of sickle cell disease: Insights using transgenic mouse models. Nat Med 6, 177–182 (2000). https://doi.org/10.1038/72279

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72279

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing