Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Restoration of lymphocyte function in Janus Kinase 3-deficient mice by retroviral-mediated gene transfer

Abstract

Janus kinase-3 (JAK3) deficiency has recently been identified as a cause of severe combined immunodeficiency (SCID) in humans. We used a mouse model of Jak3-deficient SCID to test a gene therapy approach for treatment of this disease. Transfer of a Jak3 retroviral vector to repopulat-ing hematopoietic stem cells resulted in increased numbers of T and B lymphocytes, reversal of hypogammaglobulinemia, restoration of T-cell activation upon stimulation with mitogens, and development of an antigen-specific immune response after immunization. Analysis for vector copy number in lymphoid and myeloid populations showed a large in vivo selective advantage for Jak3-expressing lymphoid cells. These results show that gene replacement is a feasible treatment strategy for this disease and that naturally occurring in vivo selection of corrected cells is an important advantage of this approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hirschhorn, R. Overview of biochemical abnormalities and molecular genetics of adenosine deaminase deficiency. Pediatr. Res. 33, S35–S41 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Noguchi, M. et al. Interleukin-2 receptor γ chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Macchi, P. et al. Mutations of Jak-3 gene in patients with autosomal severe combined immunodeficiency (SCID). Nature 377, 65–68 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Russell, S. et al. Mutation of Jak3 in a patient with SCID: Essential role of Jak3 in lymphoid development. Science 270, 797–800 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Buckley, R. et al. Haploidentical bone marrow stem cell transplantation in human severe combined immunodeficiency. Semin. Hematol. 30, 92–104 (1993).

    CAS  PubMed  Google Scholar 

  6. Dror, Y. et al. Immune reconstitution in severe combined immunodeficiency disease after lectin-treated, T-cell-depleted haplocompatible bone marrow transplantation. Blood 81, 2021–2030 (1993).

    CAS  PubMed  Google Scholar 

  7. van Leeuwen, J. et al. Relationship between patterns of engraftment in peripheral blood and immune reconstitution after allogeneic bone marrow transplantation for (severe) combined immunodeficiency. Blood 84, 3936–3947 (1994).

    CAS  PubMed  Google Scholar 

  8. Blaese, R. et al. T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years. Science 270, 475–480 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Bordignon, C. et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science 270, 470–475 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Cao, X. et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor γ chain. Immunity 2, 223–238 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Johnston, J. et al. Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature 370, 151–153 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Witthuhn, B. et al. Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature 370, 153–157 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Park, S. et al. Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 3, 771–782 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Nosaka, T. et al. Defective lymphoid development in mice lacking Jak3. Science 270, 800–802 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Thomis, D., Gurniak, C., Tivol, E., Sharpe, A. & Berg, L. Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science 270, 794–797 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Candotti, F. et al. Retroviral-mediated gene correction for X-linked severe combined immunodeficiency. Blood 87, 3097–3102 (1996).

    CAS  PubMed  Google Scholar 

  17. Taylor, N. et al. Correction of interleukin-2 receptor function in X-SCID lymphoblastoid cells by retrovirally mediated transfer of the γc gene. Blood 87, 3103–3107 (1996).

    CAS  PubMed  Google Scholar 

  18. Candotti, F. et al. In vitro correction of JAK3-deficient severe combined immunodeficiency by retroviral-mediated gene transduction. J. Exp. Med. 183, 2687–2692 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Allay, J., Dumenco, L., Koc, O., Liu, L. & Gerson, S. Retroviral transduction and expression of the human alkyltransferase cDNA provides nitrosourea resistance to hematopoietic cells. Blood 85, 3342–3351 (1995).

    CAS  PubMed  Google Scholar 

  20. Laker, C. et al. Autocrine stimulation after transfer of the granulocyte/macrophage colony-stimulating factor gene and autonomous growth are distinct but interdependent steps in the oncogenic pathway. Proc. Natl. Acad. Sci. USA 84, 8458–8462 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Spencer, H., Sleep, S., Rehg, J., Blakley, R. & Sorrentino, B. A gene transfer strategy for making bone marrow cells resistant to trimetrexate. Blood 87, 2579–2587 (1996).

    CAS  PubMed  Google Scholar 

  22. Buckley, R. et al. Human severe combined immunodeficiency: Genetic, phenotypic, and functional diversity in one hundred eight infants. J. Pediatr. 130, 378–387 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Orkin, S. & Motulsky, A. (study panel chairs). Report and recommendations of the panel to assess the NIH investment in research on gene therapy (http:// www.nih.gov/news/panelrep.html), access date 5/20/97.

  24. Mardiney, M. III, et al. Enhanced host defense after gene transfer in the murine p47phox-deficient model of chronic granulomatous disease. Blood 89, 2268–2275 (1997).

    CAS  PubMed  Google Scholar 

  25. Hirschhorn, R. et al. Spontaneous in vivo reversion to normal of an inherited mutation in a patient with adenosine deaminase deficiency. Nature Genet. 13, 290–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Stephan, V. et al. Atypical X-linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells. N. Engl. J. Med. 335, 1563–1567 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Luo, H. et al. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-STAT pathways. Mol. Cell. Biol. 17, 1562–1571 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luo, H., Hanratty, W. & Dearolf, C. An amino acid substitution in the Drosophila hop Tum-1 Jak kinase causes leukemia-like hematopoietic defects. EMBO J. 14, 1412–1420 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smith, M., Duhe, R., Liu, Y. & Farrar, W. Microinjected cDNA encoding JAK2 protein-tyrosine kinase induces DNA synthesis in NIH 3T3 cells. FEBS Lett. 408, 327–330 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Miller, A. & Buttimore, C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell. Biol. 6, 2895–2902 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Markowitz, D., Goff, S. & Bank, A. A safe packaging line for gene transfer: Separating viral genes on two different plasmids. J. Virol. 62, 1120–1124 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bodine, D., McDonagh, K., Seidel, N. & Nienhuis, A. Survival and retrovirus infection of murine hematopoietic stem cells in vitro: Effects of 5-FU and method of infection. Exp. Hematol. 19, 206–212 (1991).

    CAS  PubMed  Google Scholar 

  33. Bodine, D., Karlsson, S. & Nienhuis, A. Combination of interleukins 3 and 6 preserves stem cell function in culture and enhances retrovirus-mediated gene transfer into hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 86, 8897–8901 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sorrentino, B. et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 257, 99–103 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunting, K., Sangster, M., Ihle, J. et al. Restoration of lymphocyte function in Janus Kinase 3-deficient mice by retroviral-mediated gene transfer. Nat Med 4, 58–64 (1998). https://doi.org/10.1038/nm0198-058

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0198-058

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing