Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Downregulation of Fas ligand by shedding

Abstract

Apoptosis-inducing Fas ligand (FasL) is a type II membrane protein, predominantly expressed in the activated T cells. FasL is cleaved by a putative metalloproteinase to produce a soluble form. Here, we blocked the shedding of human FasL by deleting its cleavage site. Although human Jurkat cells and mouse primary hepatocytes that express a low level of Fas were resistant to the soluble form of FasL, they were efficiently killed by membrane-bound FasL. Furthermore, soluble FasL inhibited cytotoxicity of the membrane-bound FasL. These results indicate that the membrane-bound form of FasL is the functional form and suggest that shedding of FasL is to prevent the killing of the healthy bystander cells by cytotoxic T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nagata, S. Apoptosis by death factor. Cell 88, 355–365 (1997).

    Article  CAS  Google Scholar 

  2. Tanaka, M., Suda, T., Takahashi, T. & Nagata, S. Expression of the functional soluble form of human Fas ligand in activated lymphocytes. EMBO J. 14, 1129–1135 (1995).

    Article  CAS  Google Scholar 

  3. Perez, C. et al. A nonsecretable cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell contact. Cell 63, 251–258 (1990).

    Article  CAS  Google Scholar 

  4. Pietravalle, F. et al. Human native soluble CD40L is a biologically active trimer, processed inside microsomes. J. Biol. Chem. 271, 5965–5967 (1996).

    Article  CAS  Google Scholar 

  5. Tanaka, M. et al. Fas ligand in human serum. Nature Med. 2, 317–322 (1996).

    Article  CAS  Google Scholar 

  6. Gearing, A.J. et al. Processing of tumour necrosis factor-α precursor by metalloproteinases. Nature 370, 555–557 (1994).

    Article  CAS  Google Scholar 

  7. McGeehan, G.M. et al. Regulation of tumour necrosis factor-α processing by a metalloproteinase inhibitor. Nature 370, 558–561 (1994).

    Article  CAS  Google Scholar 

  8. Mohler, K.M. et al. Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature 370, 218–220 (1994).

    Article  CAS  Google Scholar 

  9. Black, R.A. et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385, 729–733 (1997).

    Article  CAS  Google Scholar 

  10. Moss, M.L. et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour necrosis factor-α. Nature 385, 733–736 (1997).

    Article  CAS  Google Scholar 

  11. Nagata, S. & Golstein, P. The Fas death factor. Science 267, 1449–1456 (1995).

    Article  CAS  Google Scholar 

  12. Arase, H., Arase, N. & Saito, T. Fas-mediated cytotoxicity by freshly isolated natural killer cells. J. Exp. Med. 181, 1235–1238 (1995).

    Article  CAS  Google Scholar 

  13. Rouvier, E., Luciani, M.-F. & Golstein, P. Fas involvement in Ca2+-independent T cell-mediated cytotoxicity. J. Exp. Med. 177, 195–200 (1993).

    Article  CAS  Google Scholar 

  14. French, L.E. et al. Fas and Fas ligand in embryos and adult mice: Ligand expression in several immune-privileged tissues and coexpression in adult tissues characterized by apoptotic cell turnover. J. Cell Biol. 133, 335–343 (1996).

    Article  CAS  Google Scholar 

  15. Leithauser, F. et al. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplas-tic cells. Lab. Invest. 69, 415–429 (1993).

    CAS  Google Scholar 

  16. Watanabe-Fukunaga, R. et al. The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J. Immunol. 148, 1274–1279 (1992).

    CAS  Google Scholar 

  17. Suda, T. et al. Expression of the Fas ligand in cells of T-cell-lineage. J. Immunol. 154, 3806–3813 (1995).

    CAS  Google Scholar 

  18. Lowin, B., Hahne, M., Mattmann, C. & Tschopp, J. cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370, 650–652 (1994).

    Article  CAS  Google Scholar 

  19. Kägi, D. et al. Fas and perforin pathway as major mechanisms of T cell-mediated cytotoxicity. Science 265, 528–530 (1994).

    Article  Google Scholar 

  20. Kondo, T., Suda, T., Fukuyama, H., Adachi, M. & Nagata, S. Essential roles of the Fas ligand in the development of hepatitis. Nature Med. 3, 409–413 (1997).

    Article  CAS  Google Scholar 

  21. Chrvonsky, A.V. et al. The role of Fas in autoimmune diabetes. Cell 89, 17–24 (1997).

    Article  Google Scholar 

  22. Giordano, C. et al. Potential involvement of Fas and its ligand in the pathogenesis of Hashimoto's thyroiditis. Science 275, 960–963 (1997).

    Article  CAS  Google Scholar 

  23. Itoh, N. et al. Requirement of Fas for the development of autoimmune diabetes in non-obese diabetic mice. J. Exp. Med. 186, 613–618 (1997).

    Article  CAS  Google Scholar 

  24. Tanaka, M., Suda, T., Yatomi, T., Nakamura, N. & Nagata, S. Lethal effect of recombinant human Fas ligand in mice pretreated with Propionibacterium acnes. J. Immunol. 158, 2303–2309 (1997).

    CAS  PubMed  Google Scholar 

  25. Takahashi, S. et al. Establishment of apoptosis-inducing monoclonal antibody 2D1 and 2D1 -resistant variants of human T cell lines. Eur. J. Immunol. 23, 1935–1941 (1993).

    Article  CAS  Google Scholar 

  26. Ni, R. et al. Fas-mediated apoptosis in primary cultured mouse hepatocytes. Exp. Cell Res. 215, 332–337 (1994).

    Article  CAS  Google Scholar 

  27. Takahashi, T. et al. Human Fas ligand; gene structure, chromosomal location and species specificity. Int. Immunol. 6, 1567–1574 (1994).

    Article  CAS  Google Scholar 

  28. Aggarwal, B.B. et al. Human tumor necrosis factor: Production, purification, and characterization. J. Biol. Chem. 260, 2345–2354 (1985).

    CAS  PubMed  Google Scholar 

  29. Graf, D. et al. A soluble form of TRAP (CD40 ligand) is rapidly released after T cell activation. Eur. J. Immunol. 25, 1749–1754 (1995).

    Article  CAS  Google Scholar 

  30. Wolfsberg, T.G. et al. ADAM, a widely distributed and developmentally regulated gene family encoding membrane proteins with a disintegrin and metalloprotease domain. Dev. Biol. 169, 378–383 (1995).

    Article  CAS  Google Scholar 

  31. Yagami, H.T. et al. A metalloprotease-disintegrin participating in myoblast fusion. Nature 377, 652–6 (1995).

    Article  Google Scholar 

  32. Pietravalle, F. et al. Cleavage of membrane-bound CD40 ligand is not required for inducing B cell proliferation and differentiation. Eur. J. Immunol. 26, 725–728 (1996).

    Article  CAS  Google Scholar 

  33. Kischkel, F.C. et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins from a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 (1995).

    Article  CAS  Google Scholar 

  34. Watanabe, N. et al. Continuous internalization of tumor necrosis factor receptors in a human myosarcoma cell line. J. Biol. Chem. 263, 10262–10266 (1988).

    CAS  PubMed  Google Scholar 

  35. Medema, J.P. et al. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J. 16, 2794–2804 (1997).

    Article  CAS  Google Scholar 

  36. Grell, M. et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83, 793–802 (1995).

    Article  CAS  Google Scholar 

  37. Solorzano, C.C. et al. Involvement of 26-kDa cell-associated TNF-alpha in experimental hepatitis and exacerbation of liver injury with a matrix metalloproteinase inhibitor. J. Immunol. 158, 414–419 (1997).

    CAS  PubMed  Google Scholar 

  38. Bellgrau, D. et al. A role for CD95 ligand in preventing graft rejection. Nature 377, 630–632 (1995).

    Article  CAS  Google Scholar 

  39. Griffith, T.S., Brunner, T., Fletcher, S.M., Green, D.R. & Ferguson, T.A. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192 (1995).

    Article  CAS  Google Scholar 

  40. Lau, H.T., Yu, M., Fontana, A. & Stoeckert, C.J., jr. Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 273, 109–112 (1996).

    Article  CAS  Google Scholar 

  41. Allison, J., Georgiou, H.M., Strasser, A. & Vaux, D.L. Transgenic expression of CD95 ligand on islet β cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc. Natl. Acad. Sci. USA 94, 3943–3947 (1997).

    Article  CAS  Google Scholar 

  42. Seino, K., Kayagaki, N., Okumura, K. & Yagita, H. Antitumor effect of locally produced CD95 ligand. Nature Med. 3, 165–170 (1997).

    Article  CAS  Google Scholar 

  43. Kang, S.M. et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nature Med. 3, 738–743 (1997).

    Article  CAS  Google Scholar 

  44. Karp, S.E. et al. In vivo activity of tumor necrosis factor (TNF) mutants: Secretory but not membrane-bound TNF mediates the regression of retrovirally transduced murine tumor. J. Immunol. 149, 2076–2081 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mizushima, S. & Nagata, S. pEF-BOS: A powerful mammalian expression vector. Nucleic Acids Res. 18, 5322 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, M., Itai, T., Adachi, M. et al. Downregulation of Fas ligand by shedding. Nat Med 4, 31–36 (1998). https://doi.org/10.1038/nm0198-031

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0198-031

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing