Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia

Abstract

Leukemia stem cells (LSCs) in individuals with chronic myelogenous leukemia (CML) (hereafter referred to as CML LSCs) are responsible for initiating and maintaining clonal hematopoiesis. These cells persist in the bone marrow (BM) despite effective inhibition of BCR–ABL kinase activity by tyrosine kinase inhibitors (TKIs). Here we show that although the microRNA (miRNA) miR-126 supported the quiescence, self-renewal and engraftment capacity of CML LSCs, miR-126 levels were lower in CML LSCs than in long-term hematopoietic stem cells (LT-HSCs) from healthy individuals. Downregulation of miR-126 levels in CML LSCs was due to phosphorylation of Sprouty-related EVH1-domain-containing 1 (SPRED1) by BCR–ABL, which led to inhibition of the RAN–exportin-5–RCC1 complex that mediates miRNA maturation. Endothelial cells (ECs) in the BM supply miR-126 to CML LSCs to support quiescence and leukemia growth, as shown using mouse models of CML in which Mir126a (encoding miR-126) was conditionally knocked out in ECs and/or LSCs. Inhibition of BCR–ABL by TKI treatment caused an undesired increase in endogenous miR-126 levels, which enhanced LSC quiescence and persistence. Mir126a knockout in LSCs and/or ECs, or treatment with a miR-126 inhibitor that targets miR-126 expression in both LSCs and ECs, enhanced the in vivo anti-leukemic effects of TKI treatment and strongly diminished LSC leukemia-initiating capacity, providing a new strategy for the elimination of LSCs in individuals with CML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human and mouse CML LSCs express the highest levels of miR-126 among CML subpopulations.
Figure 2: BCR–ABL downregulates miR-126 expression in CML cells.
Figure 3: BCR–ABL deregulates miR-126 biogenesis.
Figure 4: Endothelial cells in the niche supply miR-126 to normal and CML LT-HSCs.
Figure 5: Endothelial cells in the BM niche supply miR-126 to CML LT-HSCs.
Figure 6: Knockdown of miR-126 expression by lentiviruses or the CpG–miR-126 inhibitor in combination with nilotinib enhances the in vivo targeting of CML LSCs.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Sawyers, C.L. Chronic myeloid leukemia. N. Engl. J. Med. 340, 1330–1340 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, B. et al. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell 21, 577–592 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chu, S. et al. Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood 118, 5565–5572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lechman, E.R. et al. Attenuation of miR-126 activity expands HSC in vivo without exhaustion. Cell Stem Cell 11, 799–811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Leeuw, D.C. et al. Attenuation of microRNA-126 expression that drives CD34+38 stem–progenitor cells in acute myeloid leukemia leads to tumor eradication. Cancer Res. 74, 2094–2105 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Dorrance, A.M. et al. Targeting leukemia stem cells in vivo with antagomiR-126 nanoparticles in acute myeloid leukemia. Leukemia 29, 2143–2153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, Z. et al. Overexpression and knockout of miR-126 both promote leukemogenesis. Blood 126, 2005–2015 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lechman, E.R. et al. miR-126 regulates distinct self-renewal outcomes in normal and malignant hematopoietic stem cells. Cancer Cell 29, 602–606 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuhnert, F. et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development 135, 3989–3993 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate hematopoiesis. Nature 532, 323–328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nucera, S. et al. miRNA-126 orchestrates an oncogenic program in B cell precursor acute lymphoblastic leukemia. Cancer Cell 29, 905–921 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Koschmieder, S. et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR–ABL leukemogenesis. Blood 105, 324–334 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Fish, J.E. et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15, 272–284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, S. et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15, 261–271 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bohnsack, M.T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185–191 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Quintanar-Audelo, M., Yusoff, P., Sinniah, S., Chandramouli, S. & Guy, G.R. Sprouty-related Ena–vasodilator-stimulated phosphoprotein-homology-1-domain-containing protein (SPRED1), a tyrosine protein phosphatase nonreceptor type 11 (SHP2) substrate in the Ras–extracellular-signal-regulated kinase (ERK) pathway. J. Biol. Chem. 286, 23102–23112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuehbacher, A., Urbich, C., Zeiher, A.M. & Dimmeler, S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ. Res. 101, 59–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Welten, S.M., Goossens, E.A., Quax, P.H. & Nossent, A.Y. The multifactorial nature of microRNAs in vascular remodeling. Cardiovasc. Res. 110, 6–22 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Chitteti, B.R. et al. CD166 regulates human and murine hematopoietic stem cells and the hematopoietic niche. Blood 124, 519–529 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Houlihan, D.D. et al. Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-α. Nat. Protoc. 7, 2103–2111 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Van Deun, J. et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J. Extracell. Vesicles 3, 24858 (2014).

    Article  CAS  Google Scholar 

  22. Witwer, K.W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2, 20360 (2013).

    Article  CAS  Google Scholar 

  23. Chu, S., Holtz, M., Gupta, M. & Bhatia, R. BCR–ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood 103, 3167–3174 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Galante, J.M., Mortenson, M.M., Bowles, T.L., Virudachalam, S. & Bold, R.J. ERK–BCL-2 pathway in the resistance of pancreatic cancer to anoikis. J. Surg. Res. 152, 18–25 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Kunisaki, Y. et al. Arteriolar niches maintain hematopoietic stem cell quiescence. Nature 502, 637–643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holyoake, T.L. & Vetrie, D. The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood 129, 1595–1606 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Boucher, M.J. et al. MEK–ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L) and Mcl-1 and promotes survival of human pancreatic cancer cells. J. Cell. Biochem. 79, 355–369 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Nechaev, S. et al. Intracellular processing of immunostimulatory CpG-siRNA: Toll-like receptor 9 facilitates siRNA dicing and endosomal escape. J. Control. Release 170, 307–315 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Q. et al. Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood 127, 1687–1700 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ewald, S.E. et al. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456, 658–662 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakamura, N. et al. Endosomes are specialized platforms for bacterial sensing and NOD2 signaling. Nature 509, 240–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Martin-Armas, M. et al. Toll-like receptor 9 (TLR9) is present in murine liver sinusoidal endothelial cells (LSECs) and mediates the effect of CpG-oligonucleotides. J. Hepatol. 44, 939–946 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Tamura, Y. et al. Scavenger receptor expressed by endothelial cells I (SREC-I) mediates the uptake of acetylated low-density lipoproteins by macrophages stimulated with lipopolysaccharide. J. Biol. Chem. 279, 30938–30944 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Yeh, Y.C., Hwang, G.Y., Liu, I.P. & Yang, V.C. Identification and expression of scavenger receptor SR-BI in endothelial cells and smooth muscle cells of rat aorta in vitro and in vivo. Atherosclerosis 161, 95–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Branford, S., Hughes, T.P. & Rudzki, Z. Monitoring chronic myeloid leukemia therapy by real-time quantitative PCR in blood is a reliable alternative to bone marrow cytogenetics. Br. J. Haematol. 107, 587–599 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Kiel, M.J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Bhatia, R., McGlave, P.B., Dewald, G.W., Blazar, B.R. & Verfaillie, C.M. Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: role of malignant stromal macrophages. Blood 85, 3636–3645 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Lötvall, J. et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913 (2014).

    Article  PubMed  Google Scholar 

  41. Huang, X. et al. Targeted delivery of microRNA-29b by transferrin-conjugated anionic lipopolyplex nanoparticles: a novel therapeutic strategy in acute myeloid leukemia. Clin. Cancer Res. 19, 2355–2367 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Animal Resources Center, Analytical Cytometry, Pathology (Liquid Tumor), Bioinformatics, Electron Microscopy, Light Microscopy, Integrative Genomics and DNA/RNA Cores at City of Hope (COH) Comprehensive Cancer Center, which is supported by the National Cancer Institute (NCI) of the US National Institutes of Health (NIH) under award number P30CA33572. We thank C.J. Kuo (Stanford University) for the Mir126aflox/flox mice and are grateful to the COH Comprehensive Cancer Center, the Glasgow Experimental Cancer Medicine Centre and the SPIRIT trials, together with the patients and their physicians, for providing primary patient material for this study. This work was supported in part by NCI grants CA205247 (Y.-H.K.), CA102031 (G.M.), CA201184 (G.M.), CA213131 (M.K.), CA180861 (G.M.), CA158350 (G.M.), CA163800 (P.D.), and CA184411 (L.L.), the Gehr Family Foundation (G.M.), the George Hoag Family Foundation (G.M.), Cancer Research UK program grant C11074/A11008 (T.L.H.) and The Howat Foundation (T.L.H.).

Author information

Authors and Affiliations

Authors

Contributions

B.Z. and L.X.T.N. designed and conducted experiments, analyzed data and wrote the manuscript; L.L., D.Z., B.K., H. Wu, F.P., Y.-L.S., C.B., H. Wang, T.M. and E.T. conducted experiments; A.L., D.S.S., H.A. and A.S.S. provided samples and reviewed the patients' data; P.S. and M.K. designed the CpG–miR-126 inhibitor and reviewed data and the manuscript; L.H., C.-C.C., A.D., V.P., Y.-C.Y., D.P. and N.C. analyzed data; C.J.K. provided the miR-126 c-KO mouse model; R.B. provided the B6 SCLtTA×BCR–ABL mouse model of CML; M.C., T.L.H. and S.J.F. provided patient samples, designed experiments and reviewed the manuscript; M.K. and Y.-H.K. designed experiments, analyzed data and reviewed the manuscript; G.M. designed experiments, analyzed data, wrote the manuscript and provided administrative support.

Corresponding authors

Correspondence to Bin Zhang or Guido Marcucci.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Nguyen, L., Li, L. et al. Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nat Med 24, 450–462 (2018). https://doi.org/10.1038/nm.4499

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4499

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research