Article | Published:

Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells

Nature Medicine volume 24, pages 282291 (2018) | Download Citation

  • An Erratum to this article was published on 10 April 2018

This article has been updated


Individuals with acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) in the gene encoding Fms-related tyrosine kinase 3 (FLT3) who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) have a 1-year survival rate below 20%. We observed that sorafenib, a multitargeted tyrosine kinase inhibitor, increased IL-15 production by FLT3-ITD+ leukemia cells. This synergized with the allogeneic CD8+ T cell response, leading to long-term survival in six mouse models of FLT3-ITD+ AML. Sorafenib-related IL-15 production caused an increase in CD8+CD107a+IFN-γ+ T cells with features of longevity (high levels of Bcl-2 and reduced PD-1 levels), which eradicated leukemia in secondary recipients. Mechanistically, sorafenib reduced expression of the transcription factor ATF4, thereby blocking negative regulation of interferon regulatory factor 7 (IRF7) activation, which enhanced IL-15 transcription. Both IRF7 knockdown and ATF4 overexpression in leukemia cells antagonized sorafenib-induced IL-15 production in vitro. Human FLT3-ITD+ AML cells obtained from sorafenib responders following sorafenib therapy showed increased levels of IL-15, phosphorylated IRF7, and a transcriptionally active IRF7 chromatin state. The mitochondrial spare respiratory capacity and glycolytic capacity of CD8+ T cells increased upon sorafenib treatment in sorafenib responders but not in nonresponders. Our findings indicate that the synergism of T cells and sorafenib is mediated via reduced ATF4 expression, causing activation of the IRF7–IL-15 axis in leukemia cells and thereby leading to metabolic reprogramming of leukemia-reactive T cells in humans. Therefore, sorafenib treatment has the potential to contribute to an immune-mediated cure of FLT3-ITD-mutant AML relapse, an otherwise fatal complication after allo-HCT.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Change history

  • 06 March 2018

    In the version of this article initially published, Omid Shah’s name was misspelled as Omid Sha. The error has been corrected in the PDF and HTML versions of this article.


Primary accessions


Gene Expression Omnibus


  1. 1.

    et al. Prediction of post-remission survival in acute myeloid leukaemia: a post-hoc analysis of the AML96 trial. Lancet Oncol. 13, 207–214 (2012).

  2. 2.

    et al. Allo-SCT for high-risk AML-CR1 in the molecular era: impact of FLT3/ITD outweighs the conventional markers. Bone Marrow Transplant. 47, 1535–1537 (2012).

  3. 3.

    et al. Sorafenib in combination with intensive chemotherapy in elderly patients with acute myeloid leukemia: results from a randomized, placebo-controlled trial. J. Clin. Oncol. 31, 3110–3118 (2013).

  4. 4.

    et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol. 16, 1691–1699 (2015).

  5. 5.

    et al. High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses. Leukemia 26, 2353–2359 (2012).

  6. 6.

    et al. Synergistic effect of sorafenib and cGvHD in patients with high-risk FLT3-ITD+ AML allows long-term disease control after allogeneic transplantation. Ann. Hematol. 94, 1899–1905 (2015).

  7. 7.

    et al. Molecular remission of FLT3-ITD+ AML relapse after allo-SCT by acute GVHD in addition to sorafenib. Bone Marrow Transplant. 47, 137–138 (2012).

  8. 8.

    et al. Phase I trial of maintenance sorafenib after allogeneic hematopoietic stem cell transplantation for Fms-like tyrosine kinase 3 internal tandem duplication acute myeloid leukemia. Biol. Blood Marrow Transplant. 20, 2042–2048 (2014).

  9. 9.

    , , & Sorafenib maintenance appears safe and improves clinical outcomes in FLT3-ITD acute myeloid leukemia after allogeneic hematopoietic cell transplantation. Clin. Lymphoma Myeloma Leuk. 15, 298–302 (2015).

  10. 10.

    et al. Sorafenib treatment following hematopoietic stem cell transplant in pediatric FLT3/ITD acute myeloid leukemia. Pediatr. Blood Cancer 62, 1048–1054 (2015).

  11. 11.

    et al. Haematopoietic cell transplantation with and without sorafenib maintenance for patients with FLT3-ITD acute myeloid leukaemia in first complete remission. Br. J. Haematol. 175, 496–504 (2016).

  12. 12.

    et al. Mll partial tandem duplication and Flt3 internal tandem duplication in a double knock-in mouse recapitulates features of counterpart human acute myeloid leukemias. Blood 120, 1130–1136 (2012).

  13. 13.

    et al. Eradicating acute myeloid leukemia in a MllPTD/wt:Flt3ITD/wt murine model: a path to novel therapeutic approaches for human disease. Blood 122, 3778–3783 (2013).

  14. 14.

    , , , & Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26, 503–517 (2007).

  15. 15.

    et al. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat. Med. 9, 1377–1382 (2003).

  16. 16.

    et al. The role of IL-15 in activating STAT5 and fine-tuning IL-17A production in CD4 T lymphocytes. J. Immunol. 189, 4237–4246 (2012).

  17. 17.

    et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 6692–6697 (2015).

  18. 18.

    et al. Persistent survival of prevalent clonotypes within an immunodominant HIV gag-specific CD8+ T cell response. J. Immunol. 186, 359–371 (2011).

  19. 19.

    , , , & Viral activation of interleukin-15 (IL-15): characterization of a virus-inducible element in the IL-15 promoter region. J. Virol. 74, 7338–7348 (2000).

  20. 20.

    et al. Distinct roles for IFN regulatory factor (IRF)-3 and IRF-7 in the activation of antitumor properties of human macrophages. Cancer Res. 66, 10576–10585 (2006).

  21. 21.

    , , , & Negative regulation of IRF7 activation by activating transcription factor 4 suggests a cross-regulation between the IFN responses and the cellular integrated stress responses. J. Immunol. 186, 1001–1010 (2011).

  22. 22.

    , , , & FLT3 D835 mutations confer differential resistance to type II FLT3 inhibitors. Leukemia 29, 2390–2392 (2015).

  23. 23.

    , & T cell metabolism drives immunity. J. Exp. Med. 212, 1345–1360 (2015).

  24. 24.

    et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

  25. 25.

    et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl. Acad. Sci. USA 110, 14336–14341 (2013).

  26. 26.

    et al. TCR diversity is a predictive marker for donor lymphocyte infusion response. Blood 128, 4605 (2016).

  27. 27.

    et al. Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response. J. Clin. Invest. 127, 517–529 (2017).

  28. 28.

    et al. Plasma levels of IL-7 and IL-15 in the first month after myeloablative BMT are predictive biomarkers of both acute GVHD and relapse. Bone Marrow Transplant. 45, 1546–1552 (2010).

  29. 29.

    et al. Interleukin-15 administration increases graft-versus-tumor activity in recipients of haploidentical hematopoietic SCT. Bone Marrow Transplant. 48, 1237–1242 (2013).

  30. 30.

    et al. Expanded donor natural killer cell and IL-2, IL-15 treatment efficacy in allogeneic hematopoietic stem cell transplantation. Eur. J. Haematol. 81, 226–235 (2008).

  31. 31.

    et al. Donor-derived IL-15 is critical for acute allogeneic graft-versus-host disease. Blood 105, 894–901 (2005).

  32. 32.

    et al. Trans-presentation of donor-derived interleukin 15 is necessary for the rapid onset of acute graft-versus-host disease but not for graft-versus-tumor activity. Blood 108, 2463–2469 (2006).

  33. 33.

    et al. IL-15 but not IL-2 rapidly induces lethal xenogeneic graft-versus-host disease. Blood 106, 2433–2435 (2005).

  34. 34.

    et al. High interleukin-15 expression characterizes childhood acute lymphoblastic leukemia with involvement of the CNS. J. Clin. Oncol. 25, 4813–4820 (2007).

  35. 35.

    et al. Expression of interleukin 15 in primary adult acute lymphoblastic leukemia. Cancer 116, 387–392 (2010).

  36. 36.

    et al. Mild chronic graft-versus-host disease may alleviate poor prognosis associated with FLT3 internal tandem duplication for adult acute myeloid leukemia following allogeneic stem cell transplantation with myeloablative conditioning in first complete remission: a retrospective study. Eur. J. Haematol. 96, 236–244 (2016).

  37. 37.

    , & Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon α genes. J. Biol. Chem. 276, 23382–23390 (2001).

  38. 38.

    et al. 5-Azacytidine and DLI can induce long-term remissions in AML patients relapsed after allograft. Bone Marrow Transplant. 50, 690–695 (2015).

  39. 39.

    et al. Survival of patients with acute myeloid leukemia relapsing after allogeneic hematopoietic cell transplantation: a center for international blood and marrow transplant research study. Biol. Blood Marrow Transplant. 21, 454–459 (2015).

  40. 40.

    et al. Donor lymphocyte infusion for the treatment of relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation: a retrospective analysis by the Adult Acute Myeloid Leukemia Working Group of the Japan Society for Hematopoietic Cell Transplantation. Biol. Blood Marrow Transplant. 20, 1785–1790 (2014).

  41. 41.

    et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

  42. 42.

    , & Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

  43. 43.

    & Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

  44. 44.

    et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

  45. 45.

    et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

  46. 46.

    et al. Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics 28, 423–425 (2012).

  47. 47.

    & A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010).

  48. 48.

    , , , & GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics 10, 161 (2009).

  49. 49.

    , , & The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 41, D793–D800 (2013).

  50. 50.

    et al. Phosphorylation-dependent binding of 14-3-3 terminates signalling by the Gab2 docking protein. EMBO J. 27, 2305–2316 (2008).

  51. 51.

    et al. Graft-versus-host disease enhanced by extracellular adenosine triphosphate activating P2X7R. Nat. Med. 16, 1434–1438 (2010).

  52. 52.

    et al. Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance GvHD via tissue damage. Nat. Med. 20, 648–654 (2014).

  53. 53.

    et al. Target antigens determine graft-versus-host disease phenotype. J. Immunol. 173, 5467–5475 (2004).

Download references


We thank G. Prinz and H. Dierbach for their help with mouse experiments, K. Geiger and D. Herchenbach for cell sorting, and S. Decker (University of Freiburg) for providing NSG mice. We thank M.E.D. Flowers (University of Washington) for help with patient data. We thank D. Cittaro for the help with bioinformatic analysis. Il15−/− mice were provided by Y. Tanriver (University of Freiburg). Il15−/− mice were provided by B. Becher (University of Zurich).

This study was supported by the German Research Foundation (DFG) Heisenberg Professorship ZE 872/3-1 (R.Z.), DFG Sonderforschungsbereiche 1074 (SFB1074; F.K.), SFB1160 (R.Z.), SFB850 (T.B.), and TRR167 (R.Z.); European Research Council (ERC) Consolidator Grant no. 681012 GvHDCure (R.Z.); Deutsche Krebshilfe no. 111639 (G.H., R.Z.); Deutsche Jose Carreras Leukämie-Stiftung (DJCLS; G.H., R.Z.); Else Kröner-Fresenius Foundation (EKF) Stiftung no. 2015_A147 (P.A.), INTERREG V Rhin Supérieur (P.A., R.Z.); LOEWE–Gentherapie Frankfurt (CGT), Hessian Ministry of Higher Education, Research and the Arts, Germany no. III L 4- 518/17.004 (E.U.); Max-Eder-Nachwuchsgruppenprogramm, Deutsche Krebshilfe no. 109420 (F.K.); European Hematology Association fellowship 2010/04 (F.K.); and National Institutes of Health (NIH) grant no. R01 CA-72669 (B.R.B.). E.R. was supported by a fellowship from Associazione Italiana per la Ricerca sul Cancro (AIRC) that was cofunded by the European Union.

Author information


  1. Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany.

    • Nimitha R Mathew
    • , Francis Baumgartner
    • , Lukas Braun
    • , Miguel Waterhouse
    • , Tony A Müller
    • , Kathrin Hanke
    • , Sanaz Taromi
    • , Petya Apostolova
    • , Anna L Illert
    • , Wolfgang Melchinger
    • , Sandra Duquesne
    • , Lena Osswald
    • , Kai-Li Yan
    • , Dietmar Pfeifer
    • , Marie Follo
    • , Rainer Claus
    • , Michael Lübbert
    • , Christoph Rummelt
    • , Hartmut Bertz
    • , Ralph Wäsch
    • , Johanna Haag
    • , Andrea Schmidts
    • , Nikolas von Bubnoff
    • , Justus Duyster
    • , Jürgen Finke
    •  & Robert Zeiser
  2. Faculty of Biology, University of Freiburg, Freiburg, Germany.

    • Nimitha R Mathew
    •  & Kathrin Hanke
  3. Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.

    • David O'Sullivan
    •  & Erika Pearce
  4. Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.

    • Simone Thomas
    •  & Wolfgang Herr
  5. Department of Pathology, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany.

    • Annette Schmitt-Graeff
  6. Department of Medical Microbiology and Hygiene, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany.

    • Arnim Weber
    • , Yakup Tanriver
    •  & Georg Häcker
  7. Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.

    • Sonia Tugues
    • , Sabine Spath
    •  & Burkhard Becher
  8. Department of Medicine II, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany.

    • Michael Schultheiss
    • , Dominik Bettinger
    •  & Robert Thimme
  9. Department for Children and Adolescents Medicine, Division of Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany.

    • Evelyn Ullrich
  10. Department of Nephrology, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany.

    • Yakup Tanriver
  11. Department of Stem Cell Transplantation, Charité University Medicine Berlin, Berlin, Germany.

    • Giang Lam Vuong
    • , Renate Arnold
    •  & Philipp Hemmati
  12. Medical Clinic III, Oncology, Hematology, Immunooncology and Rheumatology, University Hospital Bonn (UKB), Bonn, Germany.

  13. Department of Hematology, University Medical Center Innsbruck, Austria.

    • Dominik Wolf
  14. Department of Bone Marrow Transplantation, West German Cancer Center, University Hospital Essen, Essen, Germany.

    • Markus Ditschkowski
  15. Department of Urology, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany.

    • Cordula Jilg
    • , Konrad Wilhelm
    • , Christian Leiber
    •  & Dietrich Beelen
  16. Division of Hematology, University Hospital Basel, Basel, Switzerland.

    • Sabine Gerull
    • , Jörg Halter
    •  & Claudia Lengerke
  17. Department of Internal Medicine, Inselspital/Universitätsspital Bern, Bern, Switzerland.

    • Thomas Pabst
  18. Department of Hematology, Oncology and Clinical Immunology, Universitätsklinikum, Düsseldorf, Düsseldorf, Germany.

    • Thomas Schroeder
    •  & Guido Kobbe
  19. Department of Hematology and Oncology, University of Erlangen, Erlangen, Germany.

    • Wolf Rösler
  20. Institute for Neuropathology, University of Freiburg, Freiburg, Germany.

    • Soroush Doostkam
    •  & Andreas Mackensen
  21. Department of Neuroradiology, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany.

    • Stephan Meckel
    •  & Marco Prinz
  22. Department of Hematology, Oncology and Immunology, Philipps University Marburg, Marburg, Germany.

    • Kathleen Stabla
    • , Stephan K Metzelder
    •  & Andreas Neubauer
  23. Department of Hematology, University Hospital of Giessen and Marburg, Marburg, Germany.

    • Kathleen Stabla
    • , Stephan K Metzelder
    •  & Andreas Neubauer
  24. Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University Medical Center Freiburg, University of Freiburg,Freiburg, Germany.

    • Sebastian Halbach
    • , Tilman Brummer
    •  & Andreas Burchert
  25. German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.

    • Tilman Brummer
    • , Geoffroy Andrieux
    • , Melanie Börries
    •  & Hauke Busch
  26. Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany.

    • Tilman Brummer
    • , Marco Prinz
    •  & Robert Zeiser
  27. German Cancer Research Center (DKFZ), Heidelberg, Germany.

    • Tilman Brummer
    • , Susan Klaeger
    • , Geoffroy Andrieux
    • , Melanie Börries
    •  & Hauke Busch
  28. Department of Dermatology, University Medical Center, University of Freiburg, Freiburg, Germany.

    • Zehan Hu
    •  & Joern Dengjel
  29. Department of Biology, University of Fribourg, Fribourg, Switzerland.

    • Zehan Hu
    •  & Joern Dengjel
  30. Interdisciplinary Cancer Center Augsburg (ICCA) II, Clinic for Internal Medicine, Augsburg, Germany.

    • Björn Hackanson
    •  & Christoph Schmid
  31. Department of Internal Medicine I, University Hospital Cologne, Cologne, Germany.

    • Udo Holtick
    •  & Christof Scheid
  32. Hematology Stem Cell Transplant Unit, School of Medicine, University of Patras, Patras, Greece.

    • Alexandros Spyridonidis
  33. Department of Hematology and Oncology, Universitätsklinikum Carl Gustav Carus and Technischen Universität Dresden, Dresden, Germany.

    • Friedrich Stölzel
    •  & Rainer Ordemann
  34. Department of Hematology and Oncology, Universitätsklinikum Halle, Halle, Germany.

    • Lutz P Müller
  35. Assistance Publique—Hôpitaux de Paris, Hematology Stem Cell Transplantation, Saint Louis Hospital, Paris, France.

    • Flore Sicre-de-Fontbrune
    •  & Gerard Socié
  36. INSERM UMR 1160, Paris, France.

    • Flore Sicre-de-Fontbrune
    •  & Gerard Socié
  37. Clinical Trials Unit, Faculty of Medicine, University Medical Center, University of Freiburg, Freiburg, Germany.

    • Gabriele Ihorst
  38. Department of Hematology, University Medical Center Utrecht, Utrecht, the Netherlands.

    • Jürgen Kuball
  39. ProQinase, Freiburg, Germany.

    • Jan E Ehlert
    •  & Daniel Feger
  40. Department of Hematology and Oncology, Universitätsmedizin Mainz, Mainz, Germany.

    • Eva-Maria Wagner
  41. Clinique Universitaire Hématologie, Université Grenoble Alpes, Grenoble, France.

    • Jean-Yves Cahn
  42. Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany.

    • Jacqueline Schnell
    • , Florian Kuchenbauer
    •  & Donald Bunjes
  43. Cancer Institute, Royal Free Hospital, London, UK.

    • Ronjon Chakraverty
    •  & Simon Richardson
  44. Institute of Immunity and Transplantation, Royal Free Hospital, London, UK.

    • Ronjon Chakraverty
    •  & Simon Richardson
  45. Smilow Translational Research Center, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.

    • Saar Gill
  46. Department of Stem Cell Transplantation, University Hospital Hamburg-Eppendorf, Hamburg, Germany.

    • Nicolaus Kröger
    •  & Francis Ayuk
  47. Unit of Immunogenetics, Leukemia Genomics and Immunobiology, San Raffaele Scientific Institute, Milan, Italy.

    • Luca Vago
    • , Fabio Ciceri
    • , Eliana Ruggiero
    •  & Chiara Bonini
  48. Unit of Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, Milan, Italy.

    • Luca Vago
    • , Fabio Ciceri
    • , Eliana Ruggiero
    •  & Chiara Bonini
  49. Department of Hematology, University Vita-Salute, San Raffaele University, Milan, Italy.

    • Luca Vago
    • , Fabio Ciceri
    • , Eliana Ruggiero
    •  & Chiara Bonini
  50. Department of Hematology, University Hospital Zurich, Zurich, Switzerland.

    • Antonia M Müller
  51. Department of Hematology, Hokkaido University, Sapporo, Japan.

    • Takeshi Kondo
    •  & Takanori Teshima
  52. Proteomics and Bioanalytics, Technische Universität München, Partner Site of the German Cancer Consortium, Freising, Germany.

    • Susan Klaeger
    •  & Bernhard Kuster
  53. Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada.

    • Dennis (Dong Hwan) Kim
  54. Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA.

    • Daniel Weisdorf
  55. Department of Hematology, Radboud University, Nijmegen, the Netherlands.

    • Walter van der Velden
  56. Medizinische Klinik II, Universitätsklinikum Tübingen, Tübingen, Germany.

    • Daniela Dörfel
    •  & Wolfgang Bethge
  57. Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany.

    • Inken Hilgendorf
    •  & Andreas Hochhaus
  58. Systems Biology of the Cellular Microenvironment Group, IMMZ, ALU, Freiburg, Germany.

    • Geoffroy Andrieux
    • , Melanie Börries
    •  & Hauke Busch
  59. Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.

    • Hauke Busch
  60. Department of Hematology, University of Michigan Medical School, Ann Arbor, Michigan, USA.

    • John Magenau
    •  & Pavan Reddy
  61. EBMT Statistical Unit, Hôpital Saint Antoine Paris, Paris, France.

    • Myriam Labopin
  62. Dana-Farber Cancer Institute, Harvard Medical School, Harvard University, Boston, Massachusetts, USA.

    • Joseph H Antin
  63. Bone Marrow Transplant Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

    • Andrea S Henden
    •  & Geoffrey R Hill
  64. Department of Haematology, Royal Brisbane Hospital, Brisbane, Queensland, Australia.

    • Andrea S Henden
    •  & Geoffrey R Hill
  65. Department of Haematology, Royal Brisbane and Womens Hospital, Brisbane, Queensland, Australia.

    • Geoffrey R Hill
    •  & Glen A Kennedy
  66. Division of Blood and Marrow Transplantation, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA.

    • Merav Bar
  67. Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK.

    • Anita Sarma
    • , Donal McLornan
    •  & Ghulam Mufti
  68. Division of Bone Marrow Transplantation, MD Anderson Cancer Center, Houston, Texas, USA.

    • Betul Oran
    •  & Katayoun Rezvani
  69. Division of Blood and Marrow Transplantation, Stanford University Medical School, Stanford, California, USA.

    • Omid Shah
    •  & Robert S Negrin
  70. Division of Hematology, Chaim Sheba Medical Center, Tel Hashomer, Israel.

    • Arnon Nagler
  71. Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA.

    • Michael A Caligiuri
  72. Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA.

    • Bruce R Blazar


  1. Search for Nimitha R Mathew in:

  2. Search for Francis Baumgartner in:

  3. Search for Lukas Braun in:

  4. Search for David O'Sullivan in:

  5. Search for Simone Thomas in:

  6. Search for Miguel Waterhouse in:

  7. Search for Tony A Müller in:

  8. Search for Kathrin Hanke in:

  9. Search for Sanaz Taromi in:

  10. Search for Petya Apostolova in:

  11. Search for Anna L Illert in:

  12. Search for Wolfgang Melchinger in:

  13. Search for Sandra Duquesne in:

  14. Search for Annette Schmitt-Graeff in:

  15. Search for Lena Osswald in:

  16. Search for Kai-Li Yan in:

  17. Search for Arnim Weber in:

  18. Search for Sonia Tugues in:

  19. Search for Sabine Spath in:

  20. Search for Dietmar Pfeifer in:

  21. Search for Marie Follo in:

  22. Search for Rainer Claus in:

  23. Search for Michael Lübbert in:

  24. Search for Christoph Rummelt in:

  25. Search for Hartmut Bertz in:

  26. Search for Ralph Wäsch in:

  27. Search for Johanna Haag in:

  28. Search for Andrea Schmidts in:

  29. Search for Michael Schultheiss in:

  30. Search for Dominik Bettinger in:

  31. Search for Robert Thimme in:

  32. Search for Evelyn Ullrich in:

  33. Search for Yakup Tanriver in:

  34. Search for Giang Lam Vuong in:

  35. Search for Renate Arnold in:

  36. Search for Philipp Hemmati in:

  37. Search for Dominik Wolf in:

  38. Search for Markus Ditschkowski in:

  39. Search for Cordula Jilg in:

  40. Search for Konrad Wilhelm in:

  41. Search for Christian Leiber in:

  42. Search for Sabine Gerull in:

  43. Search for Jörg Halter in:

  44. Search for Claudia Lengerke in:

  45. Search for Thomas Pabst in:

  46. Search for Thomas Schroeder in:

  47. Search for Guido Kobbe in:

  48. Search for Wolf Rösler in:

  49. Search for Soroush Doostkam in:

  50. Search for Stephan Meckel in:

  51. Search for Kathleen Stabla in:

  52. Search for Stephan K Metzelder in:

  53. Search for Sebastian Halbach in:

  54. Search for Tilman Brummer in:

  55. Search for Zehan Hu in:

  56. Search for Joern Dengjel in:

  57. Search for Björn Hackanson in:

  58. Search for Christoph Schmid in:

  59. Search for Udo Holtick in:

  60. Search for Christof Scheid in:

  61. Search for Alexandros Spyridonidis in:

  62. Search for Friedrich Stölzel in:

  63. Search for Rainer Ordemann in:

  64. Search for Lutz P Müller in:

  65. Search for Flore Sicre-de-Fontbrune in:

  66. Search for Gabriele Ihorst in:

  67. Search for Jürgen Kuball in:

  68. Search for Jan E Ehlert in:

  69. Search for Daniel Feger in:

  70. Search for Eva-Maria Wagner in:

  71. Search for Jean-Yves Cahn in:

  72. Search for Jacqueline Schnell in:

  73. Search for Florian Kuchenbauer in:

  74. Search for Donald Bunjes in:

  75. Search for Ronjon Chakraverty in:

  76. Search for Simon Richardson in:

  77. Search for Saar Gill in:

  78. Search for Nicolaus Kröger in:

  79. Search for Francis Ayuk in:

  80. Search for Luca Vago in:

  81. Search for Fabio Ciceri in:

  82. Search for Antonia M Müller in:

  83. Search for Takeshi Kondo in:

  84. Search for Takanori Teshima in:

  85. Search for Susan Klaeger in:

  86. Search for Bernhard Kuster in:

  87. Search for Dennis (Dong Hwan) Kim in:

  88. Search for Daniel Weisdorf in:

  89. Search for Walter van der Velden in:

  90. Search for Daniela Dörfel in:

  91. Search for Wolfgang Bethge in:

  92. Search for Inken Hilgendorf in:

  93. Search for Andreas Hochhaus in:

  94. Search for Geoffroy Andrieux in:

  95. Search for Melanie Börries in:

  96. Search for Hauke Busch in:

  97. Search for John Magenau in:

  98. Search for Pavan Reddy in:

  99. Search for Myriam Labopin in:

  100. Search for Joseph H Antin in:

  101. Search for Andrea S Henden in:

  102. Search for Geoffrey R Hill in:

  103. Search for Glen A Kennedy in:

  104. Search for Merav Bar in:

  105. Search for Anita Sarma in:

  106. Search for Donal McLornan in:

  107. Search for Ghulam Mufti in:

  108. Search for Betul Oran in:

  109. Search for Katayoun Rezvani in:

  110. Search for Omid Shah in:

  111. Search for Robert S Negrin in:

  112. Search for Arnon Nagler in:

  113. Search for Marco Prinz in:

  114. Search for Andreas Burchert in:

  115. Search for Andreas Neubauer in:

  116. Search for Dietrich Beelen in:

  117. Search for Andreas Mackensen in:

  118. Search for Nikolas von Bubnoff in:

  119. Search for Wolfgang Herr in:

  120. Search for Burkhard Becher in:

  121. Search for Gerard Socié in:

  122. Search for Michael A Caligiuri in:

  123. Search for Eliana Ruggiero in:

  124. Search for Chiara Bonini in:

  125. Search for Georg Häcker in:

  126. Search for Justus Duyster in:

  127. Search for Jürgen Finke in:

  128. Search for Erika Pearce in:

  129. Search for Bruce R Blazar in:

  130. Search for Robert Zeiser in:


N.R.M. performed the majority of the experiments, helped develop the overall concept behind the study, and helped write the manuscript. F.B. helped with the experiments and with development of the overall concept behind the study. L.B. performed ATF4 overexpression experiments. D.O'S. helped with Seahorse analysis. S. Thomas and S. Tugues helped with mouse experiments. M.W., T.A.M., K.H., P.A., A.L.I., G.I., K.S., W.M., S. Duqusne and A.W. helped with experiments and data interpretation. A.S.-G. performed immunohistological analysis. L.O. and K.-L.Y. helped with experiments. D.P., M.F., R. Claus, M. Lübbert, C.R., H. Bertz, R.W., J.H., A. Schmidts, M.S., D. Bettinger, R.T., E.U., Y.T., G.L.V., R.A., P.H., D. Wolf, M.D., C.J., K.W., C. Leiber, S. Gerull, J.H., C. Lengerke, T.P., T.S., G.K., W.R., S. Doostkam, S.M., and S.K.M. provided patient data. S. Taromi, S.S., and B.B. helped with mouse experiments. S.H. and T.B. helped with western blot and knockdown experiments. Z.H. and J. Dengjel performed mass spectrometry and data analysis. S.K. and B.K. performed mass spectrometry of sorafenib binding partners and kinome analysis. B.H., C. Schmid, U.H., C. Scheid, A. Spyridonidis, F.S., R.O., L.P.M., F.S.-d.-F., and J.K. provided patient data and helped with the analysis. M.P. performed analysis of the biopsy specimen. A.B., A. Nagler, D. Bunjes, A.M., W.H., and G.S. provided patient data and helped develop the overall concept behind the study. J.E.E. and D.F. analyzed the level of FLT3 inhibition upon sorafenib exposure. E.-M.W., J.-Y.C., F.K., D. Beelen, R. Chakraverty, S.R., S. Gill, N.K., F.A., L.V., J.S., and F.C. provided and analyzed patient data. E.R. and C.B. performed TRC sequencing and analyzed related data. A.M.M., T.K., T.T., B.K., D.K., D. Weisdorf, W.v.d.V., D.D., W.B., I.H., A.H., G.A., M. Börries, H. Busch, J.M., P.R., M. Labopin, J.H.A., A.S.H., G.R.H., G.A.K., M. Bar, A. Sarma, D.M., G.M., B.O., K.R., O.S., R.S.N., and A. Neubauer provided and analyzed patient data. E.U. and M.A.C. provided reagents and contributed to the development of the concept behind the study and the manuscript. B.R.B., N.v.B., and G.H. provided reagents, helped with the experiments, and analyzed data. E.P. helped to plan and analyze the T cell metabolism experiments. J. Duyster and J.F. helped develop the concept behind the study, analyze the data, and write the manuscript. R.Z. developed the overall concept behind the study, supervised the experiments, analyzed the data, and wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Robert Zeiser.

Supplementary information

PDF files

  1. 1.

    Supplementary Figures & Tables

    Supplementary Figures 1–21 & Supplementary Tables 2–12

  2. 2.

    Life Sciences Reporting Summary

Excel files

  1. 1.

    Supplementary Table 1

    Patients raw data

About this article

Publication history