Abstract

The stress-responsive epigenetic repressor histone deacetylase 4 (HDAC4) regulates cardiac gene expression. Here we show that the levels of an N-terminal proteolytically derived fragment of HDAC4, termed HDAC4-NT, are lower in failing mouse hearts than in healthy control hearts. Virus-mediated transfer of the portion of the Hdac4 gene encoding HDAC4-NT into the mouse myocardium protected the heart from remodeling and failure; this was associated with decreased expression of Nr4a1, which encodes a nuclear orphan receptor, and decreased NR4A1-dependent activation of the hexosamine biosynthetic pathway (HBP). Conversely, exercise enhanced HDAC4-NT levels, and mice with a cardiomyocyte-specific deletion of Hdac4 show reduced exercise capacity, which was characterized by cardiac fatigue and increased expression of Nr4a1. Mechanistically, we found that NR4A1 negatively regulated contractile function in a manner that depended on the HBP and the calcium sensor STIM1. Our work describes a new regulatory axis in which epigenetic regulation of a metabolic pathway affects calcium handling. Activation of this axis during intermittent physiological stress promotes cardiac function, whereas its impairment in sustained pathological cardiac stress leads to heart failure.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Primary accessions

Gene Expression Omnibus

Sequence Read Archive

References

  1. 1.

    , & Molecular basis of physiological heart growth: fundamental concepts and new players. Nat. Rev. Mol. Cell Biol. 14, 38–48 (2013).

  2. 2.

    , , & Histone deacetylase signaling in cardioprotection. Cell. Mol. Life Sci. 71, 1673–1690 (2014).

  3. 3.

    , , , & CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J. Clin. Invest. 116, 1853–1864 (2006).

  4. 4.

    et al. The cardiac CaMKII genes δ and γ contribute redundantly to adverse remodeling but inhibit calcineurin-induced myocardial hypertrophy. Circulation 130, 1262–1273 (2014).

  5. 5.

    et al. CaMKII and PKA differentially regulate SR Ca2+ leak in human cardiac pathology. Circulation 128, 970–981 (2013).

  6. 6.

    et al. Sustained β1-adrenergic stimulation modulates cardiac contractility by Ca2+–calmodulin kinase signaling pathway. Circ. Res. 95, 798–806 (2004).

  7. 7.

    et al. Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J. Cell Biol. 195, 403–415 (2011).

  8. 8.

    , , & Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc. Natl. Acad. Sci. USA 97, 4070–4075 (2000).

  9. 9.

    , & Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol. Cell. Biol. 21, 6312–6321 (2001).

  10. 10.

    et al. A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133, 978–993 (2008).

  11. 11.

    & Roles and posttranslational regulation of cardiac class IIa histone deacetylase isoforms. J. Physiol. (Lond.) 593, 1785–1797 (2015).

  12. 12.

    , , & Neurohormonal regulation of cardiac histone deacetylase 5 nuclear localization by phosphorylation-dependent and phosphorylation-independent mechanisms. Circ. Res. 110, 1585–1595 (2012).

  13. 13.

    et al. Rapid and highly efficient inducible cardiac gene knockout in adult mice using AAV-mediated expression of Cre recombinase. Cardiovasc. Res. 104, 15–23 (2014).

  14. 14.

    et al. The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. J. Clin. Invest. 118, 124–132 (2008).

  15. 15.

    et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119, 555–566 (2004).

  16. 16.

    & Nuclear hormone receptor 4A signaling: implications for metabolic disease. Mol. Endocrinol. 24, 1891–1903 (2010).

  17. 17.

    & NR4A orphan nuclear receptors: transcriptional regulators of gene expression in metabolism and vascular biology. Arterioscler. Thromb. Vasc. Biol. 30, 1535–1541 (2010).

  18. 18.

    , & in Essentials of Glycobiology (eds. Varki, A. et al.) (Cold Spring Harbor Laboratory Press, 2015).

  19. 19.

    et al. Diindolylmethane analogs bind NR4A1 and are NR4A1 antagonists in colon cancer cells. Mol. Endocrinol. 28, 1729–1739 (2014).

  20. 20.

    et al. Mitochondrial translocation of Nur77 mediates cardiomyocyte apoptosis. Eur. Heart J. 32, 2179–2188 (2011).

  21. 21.

    et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 502, 372–376 (2013).

  22. 22.

    , , , & Modification of STIM1 by O-linked N-acetylglucosamine (O-GlcNAc) attenuates store-operated calcium entry in neonatal cardiomyocytes. J. Biol. Chem. 287, 39094–39106 (2012).

  23. 23.

    et al. Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase A. Circ. Res. 89, 997–1004 (2001).

  24. 24.

    et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376 (2000).

  25. 25.

    Role of RyR2 phosphorylation in heart failure and arrhythmias: protein kinase A–mediated hyperphosphorylation of the ryanodine receptor at serine 2,808 does not alter cardiac contractility or cause heart failure and arrhythmias. Circ. Res. 114, 1320–1327 (2014).

  26. 26.

    et al. The δ isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc. Natl. Acad. Sci. USA 106, 2342–2347 (2009).

  27. 27.

    et al. Requirement for Ca2+–calmodulin-dependent kinase II in the transition from pressure-overload-induced cardiac hypertrophy to heart failure in mice. J. Clin. Invest. 119, 1230–1240 (2009).

  28. 28.

    et al. Mutation of the Cα subunit of PKA leads to growth retardation and sperm dysfunction. Mol. Endocrinol. 16, 630–639 (2002).

  29. 29.

    et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell 154, 569–582 (2013).

  30. 30.

    et al. CREB-dependent Nur77 induction following depolarization in PC12 cells and neurons is modulated by MEF2 transcription factors. J. Neurochem. 112, 1065–1073 (2010).

  31. 31.

    et al. The orphan receptor TR3 participates in angiotensin II–induced cardiac hypertrophy by controlling mTOR signaling. EMBO Mol. Med. 5, 137–148 (2013).

  32. 32.

    et al. Orphan nuclear receptor Nur77 affects cardiomyocyte calcium homeostasis and adverse cardiac remodeling. Sci. Rep. 5, 15404 (2015).

  33. 33.

    & Metabolic remodeling in the hypertrophic heart: fuel for thought. Circ. Res. 111, 666–668 (2012).

  34. 34.

    et al. O-linked β-N-acetylglucosamine transferase is indispensable in the failing heart. Proc. Natl. Acad. Sci. USA 107, 17797–17802 (2010).

  35. 35.

    et al. Spliced X-box-binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell 156, 1179–1192 (2014).

  36. 36.

    , & Glucosamine protects neonatal cardiomyocytes from ischemia–reperfusion injury via increased protein O-GlcNAc and increased mitochondrial Bcl-2. Am. J. Physiol. Cell Physiol. 294, C1509–C1520 (2008).

  37. 37.

    , & Increased O-GlcNAc levels during reperfusion lead to improved functional recovery and reduced calpain proteolysis. Am. J. Physiol. Heart Circ. Physiol. 293, H1391–H1399 (2007).

  38. 38.

    et al. Proposed regulation of gene expression by glucose in rodent heart. Gene Regul. Syst. Bio. 1, 251–262 (2007).

  39. 39.

    et al. Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ. Res. 96, 1006–1013 (2005).

  40. 40.

    et al. Cardiomyocyte Ogt limits ventricular dysfunction in mice following pressure overload without affecting hypertrophy. Basic Res. Cardiol. 112, 23 (2017).

  41. 41.

    , & Myocardial energetics in heart failure. Basic Res. Cardiol. 108, 358 (2013).

  42. 42.

    , , & Glucosamine inhibits angiotensin II–induced cytoplasmic Ca2+ elevation in neonatal cardiomyocytes via protein-associated O-linked N-acetylglucosamine. Am. J. Physiol. Cell Physiol. 290, C57–C65 (2006).

  43. 43.

    , , & Hyperglycemia inhibits capacitative calcium entry and hypertrophy in neonatal cardiomyocytes. Diabetes 51, 3461–3467 (2002).

  44. 44.

    & Store-operated calcium channels. Physiol. Rev. 85, 757–810 (2005).

  45. 45.

    et al. Critical role for stromal interaction molecule 1 in cardiac hypertrophy. Circulation 124, 796–805 (2011).

  46. 46.

    et al. STIM1-dependent store-operated Ca2+ entry is required for pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 52, 136–147 (2012).

  47. 47.

    et al. Orai1 and Stim1 regulate normal and hypertrophic growth in cardiomyocytes. J. Mol. Cell. Cardiol. 48, 1329–1334 (2010).

  48. 48.

    et al. STIM1 elevation in the heart results in aberrant Ca2+ handling and cardiomyopathy. J. Mol. Cell. Cardiol. 87, 38–47 (2015).

  49. 49.

    et al. Cardiac Stim1 silencing impairs adaptive hypertrophy and promotes heart failure through inactivation of mTORC2–Akt signaling. Circulation 133, 1458–1471, discussion 1471 (2016).

  50. 50.

    et al. Stromal interaction molecule 1 is essential for normal cardiac homeostasis through modulation of ER and mitochondrial function. Am. J. Physiol. Heart Circ. Physiol. 306, H1231–H1239 (2014).

  51. 51.

    et al. STIM1 signaling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat. Cell Biol. 10, 688–697 (2008).

  52. 52.

    , , , & Orai1-dependent calcium entry promotes skeletal muscle growth and limits fatigue. Nat. Commun. 4, 2805 (2013).

  53. 53.

    et al. Enhanced resistance to fatigue and altered calcium handling properties of sarcalumenin knockout mice. Physiol. Genomics 23, 72–78 (2005).

  54. 54.

    et al. Role of STIM1 in hypertrophy-related contractile dysfunction. Circ. Res. 121, 125–136 (2017).

  55. 55.

    , , , & STIM1 enhances SR Ca2+ content through binding phospholamban in rat ventricular myocytes. Proc. Natl. Acad. Sci. USA 112, E4792–E4801 (2015).

  56. 56.

    , , , & Cardiac fatigue after prolonged exercise. Circulation 76, 1206–1213 (1987).

  57. 57.

    & Phidippides cardiomyopathy: a review and case illustration. Clin. Cardiol. 35, 69–73 (2012).

  58. 58.

    et al. High levels of circulating epinephrine trigger apical cardiodepression in a β2-adrenergic receptor–Gi-dependent manner: a new model of Takotsubo cardiomyopathy. Circulation 126, 697–706 (2012).

  59. 59.

    , & Takotsubo syndrome: underdiagnosed, underestimated but understood? J. Am. Coll. Cardiol. 67, 1937–1940 (2016).

  60. 60.

    et al. Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J. Clin. Invest. 100, 169–179 (1997).

  61. 61.

    et al. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat. Immunol. 9, 432–443 (2008).

  62. 62.

    et al. G13-mediated signaling pathway is required for pressure-overload-induced cardiac remodeling and heart failure. Circulation 126, 1972–1982 (2012).

  63. 63.

    National Research Council. Guide for the Care and Use of Laboratory Animals 8th edn. (The National Academies Press, 2011).

  64. 64.

    et al. Inability to enter S phase and defective RNA polymerase II CTD phosphorylation in mice lacking Mat1. EMBO J. 20, 2844–2856 (2001).

  65. 65.

    , , , & Augmentation of AAV-mediated cardiac gene transfer after systemic administration in adult rats. Gene Ther. 15, 1558–1565 (2008).

  66. 66.

    et al. Cardiac hypertrophy is not a required compensatory response to short-term pressure overload. Circulation 101, 2863–2869 (2000).

  67. 67.

    et al. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ. Res. 105, 705–712 (2009).

  68. 68.

    et al. The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases. Cell 125, 453–466 (2006).

  69. 69.

    et al. Successful prenatal mannose treatment for congenital disorder of glycosylation Ia in mice. Nat. Med. 18, 71–73 (2011).

  70. 70.

    , & The mouse MRF4 promoter is trans-activated directly and indirectly by muscle-specific transcription factors. J. Biol. Chem. 270, 2889–2892 (1995).

  71. 71.

    et al. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol. Bioeng. 68, 106–114 (2000).

  72. 72.

    & Isolation of mitochondria with emphasis on heart mitochondria from small amounts of tissue. Methods Enzymol. 55, 39–46 (1979).

  73. 73.

    , , & Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

  74. 74.

    et al. Identification of a novel serine phosphorylation site in human glutamine:fructose-6-phosphate amidotransferase isoform 1. Biochemistry 46, 13163–13169 (2007).

  75. 75.

    et al. Cell-type-specific chromatin immunoprecipitation from multicellular complex samples using BiTS-ChIP. Nat. Protoc. 7, 978–994 (2012).

  76. 76.

    & Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

  77. 77.

    et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).

  78. 78.

    , & In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences. PLoS One 8, e67008 (2013).

  79. 79.

    , , & Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551–1566 (2013).

Download references

Acknowledgements

We thank M. Oestringer, S. Harrack and X. Qi for technical help and M. Hagenmüller for organizational help. We thank Pineda antibody service (Berlin) for production of the HDAC4-NT-specific antibody. We thank M. Sussman for providing the NR4A1-expressing adenovirus, J. Hill for providing the Stim1-D76A adenovirus and E.N. Olson for the MEF2A, MEF2C and MEF2D expression constructs. We additionally thank M.D. Schneider for providing the Myh6–Cre transgenic mice, M. Ohora (Tokyo Medical and Dental University) for providing the Stim1- and Stim2-floxed mice, and S. Offermanns (Max-Planck Institute for Heart and Lung Research, Bad Nauheim) for providing the αMHC-CreER(T2) mice. We thank U. Haberkorn and W. Mier for synthesis of DIM-C-p-PhOH. J.B. was supported by grants from the Deutsche Forschungsgemeinschaft (BA 2258/2-1 and SFB 1118), the European Commission (FP7-Health-2010 and MEDIA-261409) and the Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK; German Centre for Cardiovascular Research) and by the BMBF (German Ministry of Education and Research). L.H.L. is recipient of the Heidelberg Research Center for Molecular Medicine (HRCMM) Career Development Fellowship. S.H. received grant support from the Deutsche Forschungsgemeinschaft (He3260/8-1, He3260/7-1 and SFB1118), and the Helmholtz Cross-Program Topic Metabolic Dysfunction. M.F. received grant support from the Deutsche Forschungsgemeinschaft (SFB1118 and TR-SFB 152), the DZHK and the BMBF. C.M. is supported by the DFG (Heisenberg Programm and SFB-894). M.W. and A.E.-A. are supported by the Deutsche Forschungsgemeinschaft (EL 270/7-1 (A.E.-A.) and WA 2586/4-1 (M.W.)). J.B. is in particular grateful to E.N. Olson who contributed to the inception of this work and to the Olson lab, where J.B. continued the generation of the conditional Hdac4 KO mice; work that was started by Junyoung Oh. This work is also dedicated to the memory of Junyoung Oh.

Author information

Author notes

    • Alexander Nickel
    • , Michael Kohlhaas
    • , Christoph Maack
    •  & Oliver J Müller

    Present addresses: Department of Translational Science, Comprehensive Heart Failure Center (DZHI), University Hospital Würzburg, Würzburg, Germany (A.N., M. Kohlhaas, C.M.); Department of Internal Medicine III, University of Kiel, Kiel, Germany (O.J.M.); German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Kiel, Germany (O.J.M.).

Affiliations

  1. Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.

    • Lorenz H Lehmann
    • , Zegeye H Jebessa
    • , Michael M Kreusser
    • , Axel Horsch
    • , Tao He
    • , Mariya Kronlage
    • , Matthias Dewenter
    • , Viviana Sramek
    • , Ulrike Oehl
    • , Jutta Krebs-Haupenthal
    • , Albert H von der Lieth
    • , Andrea Schmidt
    • , Qiang Sun
    • , Daniel Finke
    •  & Johannes Backs
  2. German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Heidelberg, Germany.

    • Lorenz H Lehmann
    • , Zegeye H Jebessa
    • , Michael M Kreusser
    • , Axel Horsch
    • , Tao He
    • , Mariya Kronlage
    • , Matthias Dewenter
    • , Viviana Sramek
    • , Ulrike Oehl
    • , Jutta Krebs-Haupenthal
    • , Albert H von der Lieth
    • , Andrea Schmidt
    • , Qiang Sun
    • , Julia Ritterhoff
    • , Daniel Finke
    • , Mirko Völkers
    • , Andreas Jungmann
    • , Michaela Schäfer
    • , Juan E Camacho Londoño
    • , Benjamin Meder
    • , Marc Freichel
    • , Patrick Most
    • , Oliver J Müller
    • , Stephan Herzig
    • , Eileen E M Furlong
    • , Hugo A Katus
    •  & Johannes Backs
  3. Department of Cardiology, Heidelberg University, Heidelberg, Germany.

    • Lorenz H Lehmann
    • , Michael M Kreusser
    • , Mariya Kronlage
    • , Julia Ritterhoff
    • , Daniel Finke
    • , Mirko Völkers
    • , Andreas Jungmann
    • , Benjamin Meder
    • , Patrick Most
    • , Oliver J Müller
    •  & Hugo A Katus
  4. Center for Child and Adolescent Medicine, Department I, Heidelberg University, Heidelberg, Germany.

    • Sven W Sauer
    •  & Christian Thiel
  5. Department of Internal Medicine, Saarland University Hospital, Homburg Saar, Germany.

    • Alexander Nickel
    • , Michael Kohlhaas
    •  & Christoph Maack
  6. Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich and Joint Heidelberg–IDC Translational Diabetes Program, Heidelberg University, Neuherberg, Germany.

    • Michaela Schäfer
    •  & Stephan Herzig
  7. Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.

    • Carsten Sticht
    •  & Norbert Gretz
  8. Department of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

    • Michael Wagner
    •  & Ali El-Armouche
  9. Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.

    • Lars S Maier
  10. Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.

    • Juan E Camacho Londoño
    •  & Marc Freichel
  11. Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.

    • Hermann-Josef Gröne
  12. European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.

    • Eileen E M Furlong

Authors

  1. Search for Lorenz H Lehmann in:

  2. Search for Zegeye H Jebessa in:

  3. Search for Michael M Kreusser in:

  4. Search for Axel Horsch in:

  5. Search for Tao He in:

  6. Search for Mariya Kronlage in:

  7. Search for Matthias Dewenter in:

  8. Search for Viviana Sramek in:

  9. Search for Ulrike Oehl in:

  10. Search for Jutta Krebs-Haupenthal in:

  11. Search for Albert H von der Lieth in:

  12. Search for Andrea Schmidt in:

  13. Search for Qiang Sun in:

  14. Search for Julia Ritterhoff in:

  15. Search for Daniel Finke in:

  16. Search for Mirko Völkers in:

  17. Search for Andreas Jungmann in:

  18. Search for Sven W Sauer in:

  19. Search for Christian Thiel in:

  20. Search for Alexander Nickel in:

  21. Search for Michael Kohlhaas in:

  22. Search for Michaela Schäfer in:

  23. Search for Carsten Sticht in:

  24. Search for Christoph Maack in:

  25. Search for Norbert Gretz in:

  26. Search for Michael Wagner in:

  27. Search for Ali El-Armouche in:

  28. Search for Lars S Maier in:

  29. Search for Juan E Camacho Londoño in:

  30. Search for Benjamin Meder in:

  31. Search for Marc Freichel in:

  32. Search for Hermann-Josef Gröne in:

  33. Search for Patrick Most in:

  34. Search for Oliver J Müller in:

  35. Search for Stephan Herzig in:

  36. Search for Eileen E M Furlong in:

  37. Search for Hugo A Katus in:

  38. Search for Johannes Backs in:

Contributions

J.B., L.H.L. and Z.H.J. designed the study; L.H.L., Z.H.J., M.M.K., A.H., T.H., M. Kronlage, C.S., V.S., U.O., J.K.-H., J.R., D.F., A.N., M.S., A.S., Q.S., A.J., M.V., M.W., S.W.S. and J.B. performed experiments; L.H.L., Z.H.J., M.M.K., M.D., A.H.v.d.L., A.H., C.T., A.N., M. Kohlhaas, N.G., J.E.C.L., B.M., M.F., C.M., H.-J.G., S.H. and J.B. analyzed and interpreted data; L.H.L., V.S. and E.E.M.F. designed, executed and analyzed the ChIP experiments; H.A.K., E.E.M.F., M.F., M.W., A.E.-A., L.S.M., O.J.M., P.M., S.H. and J.B. provided research support and conceptual advice; L.H.L. and J.B. wrote the paper; and E.E.M.F., N.G., C.M. and H.A.K. revised the paper.

Competing interests

L.H.L., Z.H.J., H.A.K. and J.B. have filed a patent on HDAC4-NT gene therapy.

Corresponding author

Correspondence to Johannes Backs.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nm.4452

Further reading