Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selective neuronal lapses precede human cognitive lapses following sleep deprivation

Abstract

Sleep deprivation is a major source of morbidity with widespread health effects, including increased risk of hypertension, diabetes, obesity, heart attack, and stroke1. Moreover, sleep deprivation brings about vehicle accidents and medical errors2,3,4 and is therefore an urgent topic of investigation. During sleep deprivation, homeostatic and circadian processes interact to build up sleep pressure5, which results in slow behavioral performance (cognitive lapses) typically attributed to attentional thalamic and frontoparietal circuits6,7,8,9,10,11,12,13,14, but the underlying mechanisms remain unclear3,15. Recently, through study of electroencephalograms (EEGs) in humans16,17 and local field potentials (LFPs) in nonhuman primates18 and rodents19 it was found that, during sleep deprivation, regional 'sleep-like' slow and theta (slow/theta) waves co-occur with impaired behavioral performance during wakefulness. Here we used intracranial electrodes to record single-neuron activities and LFPs in human neurosurgical patients performing a face/nonface categorization psychomotor vigilance task (PVT)20,21,22,23,24 over multiple experimental sessions, including a session after full-night sleep deprivation. We find that, just before cognitive lapses, the selective spiking responses of individual neurons in the medial temporal lobe (MTL) are attenuated, delayed, and lengthened. These 'neuronal lapses' are evident on a trial-by-trial basis when comparing the slowest behavioral PVT reaction times to the fastest. Furthermore, during cognitive lapses, LFPs exhibit a relative local increase in slow/theta activity that is correlated with degraded single-neuron responses and with baseline theta activity. Our results show that cognitive lapses involve local state-dependent changes in neuronal activity already present in the MTL.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sleep deprivation leads to cognitive lapses in a face/nonface categorization PVT.
Figure 2: Human single-neuron responses during the face/nonface categorization PVT experiment.
Figure 3: Reduced, delayed, and lengthened single-unit responses during cognitive lapses.
Figure 4: Cognitive lapses are associated with weaker gamma power increase and weaker slow/theta power decrease in MTL LFPs.

Similar content being viewed by others

References

  1. in Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem (eds. Colten, H.R. & Altevogt, B.M.) Ch.3 (National Academies Press, 2006).

  2. Duffy, J.F., Zitting, K.M. & Czeisler, C.A. The case for addressing operator fatigue. Rev. Hum. Factors Ergon. 10, 29–78 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Goel, N., Rao, H., Durmer, J.S. & Dinges, D.F. Neurocognitive consequences of sleep deprivation. Semin. Neurol. 29, 320–339 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lyznicki, J.M., Doege, T.C., Davis, R.M. & Williams, M.A. Sleepiness, driving, and motor vehicle crashes. Council on Scientific Affairs, American Medical Association. J. Am. Med. Assoc. 279, 1908–1913 (1998).

    Article  CAS  Google Scholar 

  5. Borbély, A.A. A two process model of sleep regulation. Hum. Neurobiol. 1, 195–204 (1982).

    PubMed  Google Scholar 

  6. Chee, M.W. et al. Lapsing during sleep deprivation is associated with distributed changes in brain activation. J. Neurosci. 28, 5519–5528 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Drummond, S.P. et al. The neural basis of the psychomotor vigilance task. Sleep 28, 1059–1068 (2005).

    PubMed  Google Scholar 

  8. Drummond, S.P. et al. Sleep deprivation–induced reduction in cortical functional response to serial subtraction. Neuroreport 10, 3745–3748 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Padilla, M.L., Wood, R.A., Hale, L.A. & Knight, R.T. Lapses in a prefrontal–extrastriate preparatory attention network predict mistakes. J. Cogn. Neurosci. 18, 1477–1487 (2006).

    Article  PubMed  Google Scholar 

  10. Portas, C.M. et al. A specific role for the thalamus in mediating the interaction of attention and arousal in humans. J. Neurosci. 18, 8979–8989 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thomas, M. et al. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J. Sleep Res. 9, 335–352 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Tomasi, D. et al. Impairment of attentional networks after 1 night of sleep deprivation. Cereb. Cortex 19, 233–240 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Weissman, D.H., Roberts, K.C., Visscher, K.M. & Woldorff, M.G. The neural bases of momentary lapses in attention. Nat. Neurosci. 9, 971–978 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, J.C. et al. Frontal lobe metabolic decreases with sleep deprivation not totally reversed by recovery sleep. Neuropsychopharmacology 31, 2783–2792 (2006).

    Article  PubMed  Google Scholar 

  15. Van Dongen, H.P. & Dinges, D.F. Investigating the interaction between the homeostatic and circadian processes of sleep–wake regulation for the prediction of waking neurobehavioural performance. J. Sleep Res. 12, 181–187 (2003).

    Article  PubMed  Google Scholar 

  16. Bernardi, G. et al. Neural and behavioral correlates of extended training during sleep deprivation in humans: evidence for local, task-specific effects. J. Neurosci. 35, 4487–4500 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hung, C.S. et al. Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep 36, 59–72 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pigarev, I.N., Nothdurft, H.C. & Kastner, S. Evidence for asynchronous development of sleep in cortical areas. Neuroreport 8, 2557–2560 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Vyazovskiy, V.V. et al. Local sleep in awake rats. Nature 472, 443–447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Basner, M. & Dinges, D.F. Maximizing sensitivity of the psychomotor vigilance test (PVT) to sleep loss. Sleep 34, 581–591 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Basner, M., Rao, H., Goel, N. & Dinges, D.F. Sleep deprivation and neurobehavioral dynamics. Curr. Opin. Neurobiol. 23, 854–863 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Doran, S.M., Van Dongen, H.P. & Dinges, D.F. Sustained attention performance during sleep deprivation: evidence of state instability. Arch. Ital. Biol. 139, 253–267 (2001).

    CAS  PubMed  Google Scholar 

  23. Lim, J. & Dinges, D.F. Sleep deprivation and vigilant attention. Ann. NY Acad. Sci. 1129, 305–322 (2008).

    Article  PubMed  Google Scholar 

  24. Ma, N., Dinges, D.F., Basner, M. & Rao, H. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies. Sleep 38, 233–240 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Van Dongen, H.P., Maislin, G., Mullington, J.M. & Dinges, D.F. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26, 117–126 (2003).

    Article  PubMed  Google Scholar 

  26. Andrillon, T., Nir, Y., Cirelli, C., Tononi, G. & Fried, I. Single-neuron activity and eye movements during human REM sleep and awake vision. Nat. Commun. 6, 7884 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mormann, F. et al. Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe. J. Neurosci. 28, 8865–8872 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nir, Y. et al. Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr. Biol. 17, 1275–1285 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Edwards, E. et al. Comparison of time–frequency responses and the event-related potential to auditory speech stimuli in human cortex. J. Neurophysiol. 102, 377–386 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fisch, L. et al. Neural “ignition”: enhanced activation linked to perceptual awareness in human ventral stream visual cortex. Neuron 64, 562–574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pfurtscheller, G. & Aranibar, A. Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr. Clin. Neurophysiol. 42, 817–826 (1977).

    Article  CAS  PubMed  Google Scholar 

  32. Finelli, L.A., Baumann, H., Borbély, A.A. & Achermann, P. Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience 101, 523–529 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Nir, Y. et al. Regional slow waves and spindles in human sleep. Neuron 70, 153–169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Suthana, N. & Fried, I. Percepts to recollections: insights from single neuron recordings in the human brain. Trends Cogn. Sci. 16, 427–436 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Harris, K.D. & Thiele, A. Cortical state and attention. Nat. Rev. Neurosci. 12, 509–523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Joshi, S., Li, Y., Kalwani, R.M. & Gold, J.I. Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89, 221–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Wilhelm, B. et al. Daytime variations in central nervous system activation measured by a pupillographic sleepiness test. J. Sleep Res. 10, 1–7 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Parikh, V., Kozak, R., Martinez, V. & Sarter, M. Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56, 141–154 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fried, I. et al. Cerebral microdialysis combined with single-neuron and electroencephalographic recording in neurosurgical patients. Technical note. J. Neurosurg. 91, 697–705 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Suthana, N.A. et al. Specific responses of human hippocampal neurons are associated with better memory. Proc. Natl. Acad. Sci. USA 112, 10503–10508 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Quiroga, R.Q., Nadasdy, Z. & Ben-Shaul, Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16, 1661–1687 (2004).

    Article  PubMed  Google Scholar 

  44. Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Dawson, M.W. Fitting the ex-Gaussian equation to reaction time distributions. Behav. Res. Methods Instrum. Comput. 20, 54–57 (1988).

    Article  Google Scholar 

  46. Lacouture, Y. & Cousineau, D. How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times. Tutor. Quant. Methods Psychol. 4, 35–45 (2008).

    Article  Google Scholar 

  47. de Curtis, M. & Avanzini, G. Interictal spikes in focal epileptogenesis. Prog. Neurobiol. 63, 541–567 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the subjects for their cooperation; M. Tran, E. Behnke, T. Fields, H. Gelbard-Sagiv, and M. Sagiv for assistance with data acquisition; and B. Salaz and N. Regev for administrative help. This work was supported by a Human Frontier Science Program (HFSP) Organization long-term fellowship (Y.N.), the Planning and Budgeting Committee of the Israeli Centers of Research Excellence (I-CORE) program and the Israel Science Foundation (grant no. 51/11, Y.N.), the FP7 Marie Curie Career Integration Grant (Y.N.), the Adelis Foundation (Y.N.), Société Française de Recherche et Médecine du Sommeil (SFRMS, T.A.), the Institute of Cognitive Studies of École Normale Superieure (IEC–ENS) (ANR-10-LABX-0087 and ANR-10-IDEX-0001-02 PSL*, T.A.), National Institute of Mental Health (NIMH) grant no. R01MH099231 (C.C. and G.T.), National Institute of Neurological Disorders and Stroke (NINDS) grant no. P01NS083514 (C.C. and G.T.), National Institute of General Medical Sciences grant no. R01GM116916 (G.T.), and NINDS grant nos. R01NS033221 and R01NS084017 (I.F.).

Author information

Authors and Affiliations

Authors

Contributions

Y.N., C.C., G.T., and I.F. conceived and designed the research, I.F. performed surgeries, Y.N. and N.S. collected data, Y.N., T.A., and A.M. analyzed data, and Y.N., T.A., C.C., G.T., and I.F. wrote the manuscript. All authors provided ongoing critical review of results and commented on the manuscript.

Corresponding authors

Correspondence to Yuval Nir, Giulio Tononi or Itzhak Fried.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table and Figures

Supplementary Table 1 and Supplementary Figures 1–12 (PDF 2269 kb)

Life Sciences Reporting Summary (PDF 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nir, Y., Andrillon, T., Marmelshtein, A. et al. Selective neuronal lapses precede human cognitive lapses following sleep deprivation. Nat Med 23, 1474–1480 (2017). https://doi.org/10.1038/nm.4433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing