Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CX3CR1+ monocytes modulate learning and learning-dependent dendritic spine remodeling via TNF-α

Abstract

Impaired learning and cognitive function often occurs during systemic infection or inflammation. Although activation of the innate immune system has been linked to the behavioral and cognitive effects that are associated with infection, the underlying mechanisms remain poorly understood. Here we mimicked viral immune activation with poly(I:C), a synthetic analog of double-stranded RNA, and longitudinally imaged postsynaptic dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex using two-photon microscopy. We found that peripheral immune activation caused dendritic spine loss, impairments in learning-dependent dendritic spine formation and deficits in multiple learning tasks in mice. These observed synaptic alterations in the cortex were mediated by peripheral-monocyte-derived cells and did not require microglial function in the central nervous system. Furthermore, activation of CX3CR1highLy6Clow monocytes impaired motor learning and learning-related dendritic spine plasticity through tumor necrosis factor (TNF)-α-dependent mechanisms. Taken together, our results highlight CX3CR1high monocytes and TNF-α as potential therapeutic targets for preventing infection-induced cognitive dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Systemic immune challenge increases dendritic spine turnover in the cortex.
Figure 2: Systemic immune challenge impairs learning-dependent spine remodeling and performance improvement.
Figure 3: CX3CR1+ cells are required for altered dendritic spine plasticity after systemic immune challenge.
Figure 4: CX3CR1+ monocytes, but not microglia, mediate synaptic and learning deficits after systemic immune challenge.
Figure 5: Cx3cr1−/− chimeric mice do not show synaptic and learning deficits after systemic immune challenge.
Figure 6: TNF-α mediates synaptic and learning deficits after systemic immune challenge.

Similar content being viewed by others

References

  1. Yirmiya, R. & Goshen, I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun. 25, 181–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Ransohoff, R.M. & Engelhardt, B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol. 12, 623–635 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Marin, I. & Kipnis, J. Learning and memory ... and the immune system. Learn. Mem. 20, 601–606 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hodes, G.E., Kana, V., Menard, C., Merad, M. & Russo, S.J. Neuroimmune mechanisms of depression. Nat. Neurosci. 18, 1386–1393 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Perry, V.H., Cunningham, C. & Holmes, C. Systemic infections and inflammation affect chronic neurodegeneration. Nat. Rev. Immunol. 7, 161–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Brown, A.S. & Derkits, E.J. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am. J. Psychiatry 167, 261–280 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Estes, M.L. & McAllister, A.K. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat. Rev. Neurosci. 16, 469–486 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schmidt, H. et al. Neuropsychological sequelae of bacterial and viral meningitis. Brain 129, 333–345 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Bucks, R.S. et al. Selective effects of upper respiratory tract infection on cognition, mood and emotion processing: a prospective study. Brain Behav. Immun. 22, 399–407 (2008).

    Article  PubMed  Google Scholar 

  10. Thomas, P. et al. Exposure to herpes simplex virus, type 1 and reduced cognitive function. J. Psychiatr. Res. 47, 1680–1685 (2013).

    Article  PubMed  Google Scholar 

  11. Clifford, D.B. & Ances, B.M. HIV-associated neurocognitive disorder. Lancet Infect. Dis. 13, 976–986 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hilsabeck, R.C., Perry, W. & Hassanein, T.I. Neuropsychological impairment in patients with chronic hepatitis C. Hepatology 35, 440–446 (2002).

    Article  PubMed  Google Scholar 

  13. Sadek, J.R. et al. Persistent neuropsychological impairment associated with West Nile virus infection. J. Clin. Exp. Neuropsychol. 32, 81–87 (2010).

    Article  PubMed  Google Scholar 

  14. Meyer, U. Prenatal poly(I:C) exposure and other developmental immune activation models in rodent systems. Biol. Psychiatry 75, 307–315 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Majde, J.A. Viral double-stranded RNA, cytokines and the flu. J. Interferon Cytokine Res. 20, 259–272 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Konat, G. Cerebral response to peripheral challenge with a viral mimetic. Neurochem. Res. 41, 144–155 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Cunningham, C., Campion, S., Teeling, J., Felton, L. & Perry, V.H. The sickness behavior and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly(I:C)). Brain Behav. Immun. 21, 490–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Ibi, D. et al. Neonatal poly(I:C) treatment in mice results in schizophrenia-like behavioral and neurochemical abnormalities in adulthood. Neurosci. Res. 64, 297–305 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Kranjac, D. et al. Peripheral administration of poly(I:C) disrupts contextual fear memory consolidation and BDNF expression in mice. Behav. Brain Res. 228, 452–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Blank, T. et al. Brain endothelial- and epithelial-specific interferon receptor chain 1 drives virus-induced sickness behavior and cognitive impairment. Immunity 44, 901–912 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Auffray, C., Sieweke, M.H. & Geissmann, F. Blood monocytes: development, heterogeneity and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Shi, C. & Pamer, E.G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11, 762–774 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, J.V., Kang, S.S., Dustin, M.L. & McGavern, D.B. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457, 191–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Rivest, S. Regulation of innate immune responses in the brain. Nat. Rev. Immunol. 9, 429–439 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, G., Pan, F., Parkhurst, C.N., Grutzendler, J. & Gan, W.B. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat. Protoc. 5, 201–208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grutzendler, J., Kasthuri, N. & Gan, W.B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Yang, G., Pan, F. & Gan, W.B. Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920–924 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu, T. et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462, 915–919 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lai, C.S., Franke, T.F. & Gan, W.B. Opposite effects of fear conditioning and extinction on dendritic spine remodeling. Nature 483, 87–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Liston, C. et al. Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nat. Neurosci. 16, 698–705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hayashi-Takagi, A. et al. Labeling and optical erasure of synaptic memory traces in the motor cortex. Nature 525, 333–338 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parkhurst, C.N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schafer, D.P. et al. Microglia sculpt postnatal neural circuits in an activity- and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ajami, B., Bennett, J.L., Krieger, C., Tetzlaff, W. & Rossi, F.M.V. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10, 1538–1543 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Lawson, L.J., Perry, V.H. & Gordon, S. Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48, 405–415 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Ginhoux, F. et al. Fate-mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van Furth, R. & Cohn, Z.A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128, 415–435 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Geissmann, F., Jung, S. & Littman, D.R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Landsman, L. et al. CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113, 963–972 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Yang, G., Parkhurst, C.N., Hayes, S. & Gan, W.B. Peripheral elevation of TNF-α leads to early synaptic abnormalities in the mouse somatosensory cortex in experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 110, 10306–10311 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Beattie, E.C. et al. Control of synaptic strength by glial TNF-α. Science 295, 2282–2285 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Stellwagen, D. & Malenka, R.C. Synaptic scaling mediated by glial TNF-α. Nature 440, 1054–1059 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Stellwagen, D., Beattie, E.C., Seo, J.Y. & Malenka, R.C. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor–α. J. Neurosci. 25, 3219–3228 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Obermeier, B., Daneman, R. & Ransohoff, R.M. Development, maintenance and disruption of the blood–brain barrier. Nat. Med. 19, 1584–1596 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gu, Z. et al. A highly specific inhibitor of matrix metalloproteinase 9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J. Neurosci. 25, 6401–6408 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cros, J. et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33, 375–386 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ellery, P.J. et al. The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J. Immunol. 178, 6581–6589 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Williams, D.W. et al. Monocytes mediate HIV neuropathogenesis: mechanisms that contribute to HIV-associated neurocognitive disorders. Curr. HIV Res. 12, 85–96 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Imp, B.M. et al. Monocyte activation is associated with worse cognitive performance in HIV-infected women with virologic suppression. J. Infect. Dis. 215, 114–121 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Habbas, S. et al. Neuroinflammatory TNF-α impairs memory via astrocyte signaling. Cell 163, 1730–1741 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Buch, T. et al. A Cre-inducible diphtheria toxin receptor mediates cell-lineage ablation after toxin administration. Nat. Methods 2, 419–426 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Pasparakis, M., Alexopoulou, L., Episkopou, V. & Kollias, G. Immune and inflammatory responses in TNF-α-deficient mice: a critical requirement for TNF-α in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184, 1397–1411 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Garré, J.M., Yang, G., Bukauskas, F.F. & Bennett, M.V. FGF-1 triggers pannexin-1 hemichannel opening in spinal astrocytes of rodents and promotes inflammatory responses in acute spinal cord slices. J. Neurosci. 36, 4785–4801 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Mildner, A. et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci. 10, 1544–1553 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W.B. Gan (New York University) for the Cx3cr1–CreER mice and D.R. Littman (New York University) for the Cx3cr1–GFP mice. We also thank W.B. Gan and M.V. Bennett for critical reading of the manuscript. This work was supported by a Whitehall Foundation Research Grant (G.Y.), the US National Institutes of Health grants R01GM107469 (G.Y.) and R21AG048410 (G.Y.) and a National Council for Scientific and Technological Development (CNPq) (Brazil) fellowship (H.M.S.).

Author information

Authors and Affiliations

Authors

Contributions

J.M.G., H.M.S., J.J.L. and G.Y. designed the experiments; J.M.G. performed the in vivo imaging experiments, animal behavior assays and biochemical experiments; J.M.G. and H.M.S. performed the flow cytometry experiments; all authors contributed to the data analysis and interpretation; and J.M.G. and G.Y. wrote the manuscript.

Corresponding author

Correspondence to Guang Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17, Supplementary Table 1 and Supplementary Notes 1–2. (PDF 3709 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garré, J., Silva, H., Lafaille, J. et al. CX3CR1+ monocytes modulate learning and learning-dependent dendritic spine remodeling via TNF-α. Nat Med 23, 714–722 (2017). https://doi.org/10.1038/nm.4340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4340

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing