Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A distinct innate lymphoid cell population regulates tumor-associated T cells

Abstract

Antitumor T cells are subject to multiple mechanisms of negative regulation1,2,3. Recent findings that innate lymphoid cells (ILCs) regulate adaptive T cell responses4,5,6 led us to examine the regulatory potential of ILCs in the context of cancer. We identified a unique ILC population that inhibits tumor-infiltrating lymphocytes (TILs) from high-grade serous tumors, defined their suppressive capacity in vitro, and performed a comprehensive analysis of their phenotype. Notably, the presence of this CD56+CD3 population in TIL cultures was associated with reduced T cell numbers, and further functional studies demonstrated that this population suppressed TIL expansion and altered TIL cytokine production. Transcriptome analysis and phenotypic characterization determined that regulatory CD56+CD3 cells exhibit low cytotoxic activity, produce IL-22, and have an expression profile that overlaps with those of natural killer (NK) cells and other ILCs. NKp46 was highly expressed by these cells, and addition of anti-NKp46 antibodies to TIL cultures abrogated the ability of these regulatory ILCs to suppress T cell expansion. Notably, the presence of these regulatory ILCs in TIL cultures corresponded with a striking reduction in the time to disease recurrence. These studies demonstrate that a previously uncharacterized ILC population regulates the activity and expansion of tumor-associated T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Innate lymphoid cells can suppress the expansion of tumor-infiltrating lymphocytes.
Figure 2: T cell cytokine production is altered in cultures containing regulatory innate lymphoid cells.
Figure 3: Regulatory innate lymphoid cells have unique properties.
Figure 4: Regulatory innate lymphoid cells limit T cell expansion via natural cytotoxicity receptors, and their presence is associated with a faster time to recurrence.

Similar content being viewed by others

References

  1. Smyth, M.J., Ngiow, S.F., Ribas, A. & Teng, M.W. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 13, 143–158 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Callahan, M.K., Postow, M.A. & Wolchok, J.D. Targeting T cell co-receptors for cancer therapy. Immunity 44, 1069–1078 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Schildberg, F.A., Klein, S.R., Freeman, G.J. & Sharpe, A.H. Coinhibitory pathways in the B7–CD28 ligand–receptor family. Immunity 44, 955–972 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crome, S.Q., Lang, P.A., Lang, K.S. & Ohashi, P.S. Natural killer cells regulate diverse T cell responses. Trends Immunol. 34, 342–349 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Gasteiger, G. & Rudensky, A.Y. Interactions between innate and adaptive lymphocytes. Nat. Rev. Immunol. 14, 631–639 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Artis, D. & Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Spits, H. et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Spits, H., Bernink, J.H. & Lanier, L. NK cells and type 1 innate lymphoid cells: partners in host defense. Nat. Immunol. 17, 758–764 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Takeda, K. & Dennert, G. The development of autoimmunity in C57BL/6 lpr mice correlates with the disappearance of natural killer type 1–positive cells: evidence for their suppressive action on bone marrow stem cell proliferation, B cell immunoglobulin secretion, and autoimmune symptoms. J. Exp. Med. 177, 155–164 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Villanueva, J. et al. Natural killer cell dysfunction is a distinguishing feature of systemic onset juvenile rheumatoid arthritis and macrophage activation syndrome. Arthritis Res. Ther. 7, R30–R37 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, R., Wei, H. & Tian, Z. NK3-like NK cells are involved in protective effect of polyinosinic–polycytidylic acid on type 1 diabetes in nonobese diabetic mice. J. Immunol. 178, 2141–2147 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Tai, L.H. et al. Positive regulation of plasmacytoid dendritic cell function via Ly49Q recognition of class I MHC. J. Exp. Med. 205, 3187–3199 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beilke, J.N., Kuhl, N.R., Van Kaer, L. & Gill, R.G. NK cells promote islet allograft tolerance via a perforin-dependent mechanism. Nat. Med. 11, 1059–1065 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Rivas, M.N. et al. NK cell regulation of CD4 T cell–mediated graft-versus-host disease. J. Immunol. 184, 6790–6798 (2010).

    Article  CAS  Google Scholar 

  15. Su, H.C. et al. NK cell functions restrain T cell responses during viral infections. Eur. J. Immunol. 31, 3048–3055 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Noone, C.M. et al. Natural killer cells regulate T-cell proliferation during human parainfluenza virus type 3 infection. J. Virol. 82, 9299–9302 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Waggoner, S.N., Taniguchi, R.T., Mathew, P.A., Kumar, V. & Welsh, R.M. Absence of mouse 2B4 promotes NK cell–mediated killing of activated CD8+ T cells, leading to prolonged viral persistence and altered pathogenesis. J. Clin. Invest. 120, 1925–1938 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Soderquest, K. et al. Cutting edge: CD8+ T cell priming in the absence of NK cells leads to enhanced memory responses. J. Immunol. 186, 3304–3308 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Waggoner, S.N., Cornberg, M., Selin, L.K. & Welsh, R.M. Natural killer cells act as rheostats modulating antiviral T cells. Nature 481, 394–398 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lang, P.A. et al. Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity. Proc. Natl. Acad. Sci. USA 109, 1210–1215 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Narni-Mancinelli, E. et al. Tuning of natural killer cell reactivity by NKp46 and Helios calibrates T cell responses. Science 335, 344–348 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Peppa, D. et al. Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell–mediated deletion. J. Exp. Med. 210, 99–114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ahlenstiel, G. et al. Early changes in natural killer cell function indicate virologic response to interferon therapy for hepatitis C. Gastroenterology 141, 1231–1239.e2 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Munneke, J.M. et al. Activated innate lymphoid cells are associated with a reduced susceptibility to graft-versus-host disease. Blood 124, 812–821 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Hepworth, M.R. et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498, 113–117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nguyen, L.T. et al. Expansion and characterization of human melanoma tumor-infiltrating lymphocytes (TILs). PLoS One 5, e13940 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Koues, O.I. et al. Distinct gene regulatory pathways for human innate versus adaptive lymphoid cells. Cell 165, 1134–1146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Bernink, J.H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 14, 221–229 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Roy, S. et al. NK cells lyse T regulatory cells that expand in response to an intracellular pathogen. J. Immunol. 180, 1729–1736 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Simhadri, V.R. et al. Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function. PLoS One 3, e3377 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tothill, R.W. et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin. Cancer Res. 14, 5198–5208 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, S.H., Kim, K.S., Fodil-Cornu, N., Vidal, S.M. & Biron, C.A. Activating receptors promote NK cell expansion for maintenance, IL-10 production, and CD8 T cell regulation during viral infection. J. Exp. Med. 206, 2235–2251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fodil-Cornu, N. et al. Ly49h-deficient C57BL/6 mice: a new mouse cytomegalovirus-susceptible model remains resistant to unrelated pathogens controlled by the NK gene complex. J. Immunol. 181, 6394–6405 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Rydyznski, C.E. & Waggoner, S.N. Boosting vaccine efficacy the natural (killer) way. Trends Immunol. 36, 536–546 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Che, S. & Huston, D.P. Natural killer cell suppression of IgM production. Nat. Immun. 13, 258–269 (1994).

    CAS  PubMed  Google Scholar 

  39. Chiesa, M.D. et al. The natural killer cell–mediated killing of autologous dendritic cells is confined to a cell subset expressing CD94/NKG2A, but lacking inhibitory killer Ig-like receptors. Eur. J. Immunol. 33, 1657–1666 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. Piccioli, D., Sbrana, S., Melandri, E. & Valiante, N.M. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195, 335–341 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spaggiari, G.M. et al. NK cell–mediated lysis of autologous antigen-presenting cells is triggered by the engagement of the phosphatidylinositol 3-kinase upon ligation of the natural cytotoxicity receptors NKp30 and NKp46. Eur. J. Immunol. 31, 1656–1665 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Dobin, A. et al. STAR: ultrafast universal RNA–seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. DeLuca, D.S. et al. RNA-SeQC: RNA–seq metrics for quality control and process optimization. Bioinformatics 28, 1530–1532 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, B. & Dewey, C.N. RSEM: accurate transcript quantification from RNA–Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA–seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the donors for participating in this study and C. Tran and C. Garcia-Batres for helpful comments. We thank the Princess Margaret Genomics Centre (Toronto, Canada) for performing RNA sequencing. We thank M. Pintiles for her advice regarding statistical analysis of results. S.Q.C. is a Banting Fellow and was supported by a Knudson postdoctoral fellowship. S.L.-V. was supported by a Cancer Research Institute/Irvington Institute postdoctoral fellowship and is now part of Sistema Nacional de Investigación (SNI) de SENACYT, Panamá. T.J.P. is supported by the Princess Margaret Cancer Foundation, the Canada Foundation for Innovation, the Leaders Opportunity Fund (CFI 32383), and the Ontario Ministry of Research and Innovation, Ontario Research Fund Small Infrastructure Program. P.A.L. is supported by the Alexander von Humboldt Foundation (SKA2010) and the German Research Council (LA2558/3-1, LA2558/5-1, SFB974, RTG1949). L.L.L. is an American Cancer Society Professor funded by US National Institutes of Health grants AI066897 and AI068129 and the Parker Institute for Cancer Immunotherapy. P.S.O. holds a Canada Research Chair in Autoimmunity and Tumor Immunity. Canadian Institutes for Health Research grant CCM 104887 and CIHR Foundation award FDN143220 to P.S.O. supported this work.

Author information

Authors and Affiliations

Authors

Contributions

S.Q.C. and P.S.O. designed and supervised the project, analyzed the data, and wrote the manuscript. L.T.N., S.L.-V. and L.L.L. designed and analyzed experiments. L.T.N., S.L.-V., L.L.L., P.A.L. and D.J.J. also edited the manuscript. S.Y.C.Y. and T.J.P. performed the RNA–seq analysis. B.M. and H.K.B. evaluated outcome data in published microarray data sets. A.M., R.S., B.A.C. and P.A.S. performed immunohistochemistry staining and analysis to confirm HGSC. J.Y.Y., D.J.J., J.N., M.P. and P.H.Y. assisted with experiments. S.R.K., M.Q.B. and P.A.S. collected patient clinical data.

Corresponding author

Correspondence to Pamela S Ohashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Supplementary Figures 1–10 (PDF 1951 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crome, S., Nguyen, L., Lopez-Verges, S. et al. A distinct innate lymphoid cell population regulates tumor-associated T cells. Nat Med 23, 368–375 (2017). https://doi.org/10.1038/nm.4278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4278

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research