Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies

Abstract

The cytostatic deoxycytidine analog cytarabine (ara-C) is the most active agent available against acute myelogenous leukemia (AML). Together with anthracyclines, ara-C forms the backbone of AML treatment for children and adults1. In AML, both the cytotoxicity of ara-C in vitro and the clinical response to ara-C therapy are correlated with the ability of AML blasts to accumulate the active metabolite ara-C triphosphate (ara-CTP)2,3,4,5, which causes DNA damage through perturbation of DNA synthesis6. Differences in expression levels of known transporters or metabolic enzymes relevant to ara-C only partially account for patient-specific differential ara-CTP accumulation in AML blasts and response to ara-C treatment7,8,9. Here we demonstrate that the deoxynucleoside triphosphate (dNTP) triphosphohydrolase SAM domain and HD domain 1 (SAMHD1) promotes the detoxification of intracellular ara-CTP pools. Recombinant SAMHD1 exhibited ara-CTPase activity in vitro, and cells in which SAMHD1 expression was transiently reduced by treatment with the simian immunodeficiency virus (SIV) protein Vpx were dramatically more sensitive to ara-C-induced cytotoxicity. CRISPR–Cas9-mediated disruption of the gene encoding SAMHD1 sensitized cells to ara-C, and this sensitivity could be abrogated by ectopic expression of wild-type (WT), but not dNTPase-deficient, SAMHD1. Mouse models of AML lacking SAMHD1 were hypersensitive to ara-C, and treatment ex vivo with Vpx sensitized primary patient-derived AML blasts to ara-C. Finally, we identified SAMHD1 as a risk factor in cohorts of both pediatric and adult patients with de novo AML who received ara-C treatment. Thus, SAMHD1 expression levels dictate patient sensitivity to ara-C, providing proof-of-concept that the targeting of SAMHD1 by Vpx could be an attractive therapeutic strategy for potentiating ara-C efficacy in hematological malignancies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SAMHD1 is an ara-CTPase that protects cells from lethal misincorporation of ara-CTP into DNA.
Figure 2: Disruption of SAMHD1 expression sensitizes AML xenotransplants in mice and primary patient-derived AML blasts ex vivo to ara-C.
Figure 3: Low SAMHD1 expression levels are associated with a better response to ara-C therapy in patients with AML.

Similar content being viewed by others

References

  1. Rowe, J.M. Important milestones in acute leukemia in 2013. Best Pract. Res. Clin. Haematol. 26, 241–244 (2013).

    Article  PubMed  Google Scholar 

  2. Zittoun, R., Marie, J.P., Delanian, S., Suberville, A.M. & Thevenin, D. Prognostic value of in vitro uptake and retention of cytosine arabinoside in acute myelogenous leukemia. Semin. Oncol. 14 (Suppl. 1), 269–275 (1987).

    CAS  PubMed  Google Scholar 

  3. Kessel, D., Hall, T.C. & Rosenthal, D. Uptake and phosphorylation of cytosine arabinoside by normal and leukemic human blood cells in vitro. Cancer Res. 29, 459–463 (1969).

    CAS  PubMed  Google Scholar 

  4. Heinemann, V. & Jehn, U. Rationales for a pharmacologically optimized treatment of acute nonlymphocytic leukemia with cytosine arabinoside. Leukemia 4, 790–796 (1990).

    CAS  PubMed  Google Scholar 

  5. Estey, E. et al. Variables predicting response to high dose cytosine arabinoside therapy in patients with refractory acute leukemia. Leukemia 1, 580–583 (1987).

    CAS  PubMed  Google Scholar 

  6. Kufe, D., Spriggs, D., Egan, E.M. & Munroe, D. Relationships among Ara-CTP pools, formation of (Ara-C)DNA, and cytotoxicity of human leukemic cells. Blood 64, 54–58 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Yamauchi, T. et al. Intracellular cytarabine triphosphate production correlates to deoxycytidine kinase/cytosolic 5′-nucleotidase II expression ratio in primary acute myeloid leukemia cells. Biochem. Pharmacol. 77, 1780–1786 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Yue, L. et al. A functional single-nucleotide polymorphism in the human cytidine deaminase gene contributing to ara-C sensitivity. Pharmacogenetics 13, 29–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Galmarini, C.M. et al. Potential mechanisms of resistance to cytarabine in AML patients. Leuk. Res. 26, 621–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. de Rooij, J.D., Zwaan, C.M. & van den Heuvel-Eibrink, M Pediatric AML: from biology to clinical management. J. Clin. Med. 4, 127–149 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ossenkoppele, G. & Löwenberg, B. How I treat the older patient with acute myeloid leukemia. Blood 125, 767–774 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Styczynski, J. Drug resistance in childhood acute myeloid leukemia. Curr. Pharm. Biotechnol. 8, 59–75 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Fernandez-Calotti, P., Jordheim, L.P., Giordano, M., Dumontet, C. & Galmarini, C.M. Substrate cycles and drug resistance to 1-beta-D-arabinofuranosylcytosine (araC). Leuk. Lymphoma 46, 335–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Stam, R.W. et al. Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. Blood 101, 1270–1276 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Rice, G.I. et al. Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet. 41, 829–832 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, N., Zhang, W. & Cao, X. Identification of human homologue of mouse IFN-gamma induced protein from human dendritic cells. Immunol. Lett. 74, 221–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ji, X., Tang, C., Zhao, Q., Wang, W. & Xiong, Y. Structural basis of cellular dNTP regulation by SAMHD1. Proc. Natl. Acad. Sci. USA 111, E4305–E4314 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arnold, L.H., Kunzelmann, S., Webb, M.R. & Taylor, I.A. A continuous enzyme-coupled assay for triphosphohydrolase activity of HIV-1 restriction factor SAMHD1. Antimicrob. Agents Chemother. 59, 186–192 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Rees, M.G. et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat. Chem. Biol. 12, 109–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Seashore-Ludlow, B. et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov. 5, 1210–1223 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schaller, T., Pollpeter, D., Apolonia, L., Goujon, C. & Malim, M.H. Nuclear import of SAMHD1 is mediated by a classical karyopherin α/β1 dependent pathway and confers sensitivity to VpxMAC induced ubiquitination and proteasomal degradation. Retrovirology 11, 29 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bhattacharya, A. et al. Effects of T592 phosphomimetic mutations on tetramer stability and dNTPase activity of SAMHD1 can not explain the retroviral restriction defect. Sci. Rep. 6, 31353 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aye, Y. & Stubbe, J. Clofarabine 5′-di and -triphosphates inhibit human ribonucleotide reductase by altering the quaternary structure of its large subunit. Proc. Natl. Acad. Sci. USA 108, 9815–9820 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Genini, D. et al. Deoxyadenosine analogs induce programmed cell death in chronic lymphocytic leukemia cells by damaging the DNA and by directly affecting the mitochondria. Blood 96, 3537–3543 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Majda, K., Kaufman-Szymczyk, A., Lubecka-Pietruszewska, K., Bednarek, A. & Fabianowska-Majewska, K. Influence of clofarabine on transcriptional activity of PTEN, APC, RARB2, ZAP70 genes in K562 cells. Anticancer Res. 30, 4601–4606 (2010).

    CAS  PubMed  Google Scholar 

  27. Li, D. et al. Vpx mediated degradation of SAMHD1 has only a very limited effect on lentiviral transduction rate in ex vivo cultured HSPCs. Stem Cell Res. 15, 271–280 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

  29. Farrar, J.E. et al. Genomic profiling of pediatric acute myeloid leukemia reveals a changing mutational landscape from disease diagnosis to relapse. Cancer Res. 76, 2197–2205 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de Silva, S. et al. Downregulation of SAMHD1 expression correlates with promoter DNA methylation in Sézary syndrome patients. J. Invest. Dermatol. 134, 562–565 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, J.L., Lu, F.Z., Shen, X.Y., Wu, Y. & Zhao, L.T. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation. Biochem. Biophys. Res. Commun. 455, 229–233 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Jin, C. et al. MicroRNA-181 expression regulates specific post-transcriptional level of SAMHD1 expression in vitro. Biochem. Biophys. Res. Commun. 452, 760–767 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Weng, H., Lal, K., Yang, F.F. & Chen, J. The pathological role and prognostic impact of miR-181 in acute myeloid leukemia. Cancer Genet. 208, 225–229 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bai, H., Cao, Z., Deng, C., Zhou, L. & Wang, C. miR-181a sensitizes resistant leukaemia HL-60/Ara-C cells to Ara-C by inducing apoptosis. J. Cancer Res. Clin. Oncol. 138, 595–602 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Fernandez, H.F. et al. Anthracycline dose intensification in acute myeloid leukemia. N. Engl. J. Med. 361, 1249–1259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lamba, J.K. Genetic factors influencing cytarabine therapy. Pharmacogenomics 10, 1657–1674 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Plunkett, W., Iacoboni, S. & Keating, M.J. Cellular pharmacology and optimal therapeutic concentrations of 1-β-D-arabinofuranosylcytosine 5′-triphosphate in leukemic blasts during treatment of refractory leukemia with high-dose 1-β-D-arabinofuranosylcytosine. Scand. J. Haematol. Suppl. 44, 51–59 (1986).

    CAS  PubMed  Google Scholar 

  38. Clifford, R. et al. SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood 123, 1021–1031 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Merati, M. et al. Aggressive CD8+ epidermotropic cutaneous T-cell lymphoma associated with homozygous mutation in SAMHD1. JAAD Case Rep. 1, 227–229 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rentoft, M. et al. Heterozygous colon cancer-associated mutations of SAMHD1 have functional significance. Proc. Natl. Acad. Sci. USA 113, 4723–4728 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seamon, K.J. & Stivers, J.T. A high-throughput enzyme-coupled assay for SAMHD1 dNTPase. J. Biomol. Screen. 20, 801–809 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gad, H. et al. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature 508, 215–221 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Griessinger, E. et al. A niche-like culture system allowing the maintenance of primary human acute myeloid leukemia-initiating cells: a new tool to decipher their chemoresistance and self-renewal mechanisms. Stem Cells Transl. Med. 3, 520–529 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goujon, C. et al. Evidence for IFNα-induced, SAMHD1-independent inhibitors of early HIV-1 infection. Retrovirology 10, 23 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vermeire, J. et al. Quantification of reverse transcriptase activity by real-time PCR as a fast and accurate method for titration of HIV, lenti- and retroviral vectors. PLoS One 7, e50859 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Sanjana, N.E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schaller, T. et al. HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathog. 7, e1002439 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Orta, M.L. et al. The PARP inhibitor Olaparib disrupts base excision repair of 5-aza-2′-deoxycytidine lesions. Nucleic Acids Res. 42, 9108–9120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Wickström, N. Eissler and L. Elfman for consulting and assistance with xenotransplantation. We thank S. Olsson and M. Gustafsson for assistance with animal work. We would like to thank I. Bodin for help with paraffin-embedding and processing of tumor tissue and A. Björklund for assistance with primary AML samples. We acknowledge M. Nordenskjöld and S. Eriksson for laboratory assistance, D. Gavhed and K. Edfeldt for administrative assistance. We thank D. Trono for the gift of the pMD.G plasmid. We would like to thank J. Cinatl for initial discussions. We would like to express our gratitude to NCI's Office of Cancer Genomics (OCG), The Cancer Genome Atlas (TCGA) and Therapeutically Applicable Research To Generate Effective Treatments initiative (TARGET) for granting public access to their AML databases, and to the Broad Institute for access to the Cancer Therapeutics Response Portal (CTRP). This work was supported by grants from the Swedish Children's Cancer Foundation (TJ2016-0040 (to N.H.); 2015-0005 (to J.-I.H.); PR2015-0009 (to D.G.); and PR2013-0002 and PR2014-0048 (both to T.H.)), the Swedish Cancer Society (CAN 2016/837 to J.W.; CAN 2014/814 to S.L.; CAN 2015/768 to D.G.; CAN 2013/396 to J.-I.H.; and CAN 2012/770 and CAN 2015/255 to T.H.), the Swedish Research Council (2014-1839 to M.U.; 2015-02498 to S.L.; 2012-2037 to D.G.; and 2012-5935 and 2013-3791 to T.H.), Radiumhemmet's Research Foundations (154242 to G.R. and 144063 to D.G.), the Knut and Alice Wallenberg Foundation (KAW2014.0273 to T.H.), the Swedish Pain Relief Foundation (SSF/01-05 to T.H.), the Torsten and Ragnar Söderberg Foundation (to T.H.), the David and Astrid Hagelén Foundation (C24702193 to B.D.G.P.) and the Stockholm County Council (ALF project) (20150353 to S.L. and 20150016 to J.-I.H.). This work was supported by the German Research Foundation (DFG) (SCHA1950/1-1 to T.S.) and partially through the Federal Ministry of Education and Research of Germany (BMBF)–supported Immunoquant project (0316170 C to T.S.) and HIVERA: EURECA project (01KI1307B to T.S.). S.G.R. is supported by an EMBO Long-Term Fellowship (ALTF-605-2014). Chemical Biology Consortium Sweden is funded by the Swedish Research Council, Science for Life Laboratories and Karolinska Institutet (829-2009-6241 to H.A. and T.L.).

Author information

Authors and Affiliations

Authors

Contributions

N.H. and T.S. conceived the study. N.H., S.G.R., J.-I.H., T.H. and T.S. wrote the manuscript, which was revised by all authors. N.H., J.K., L.B. and T.S. created CRISPR–Cas9 knockout cell lines and Vpx-VLPs. N.H., S.G.R., C.B.J.P, E.W., J.K., J.B. and T.S. designed and performed the proliferation inhibition assays for THP-1, HuT-78 and HL-60 cells. Experiments with primary AML blasts and hematopoietic stem cells were planned by N.H., J.W., S.L., M.U., M.S., S.G.R., N.C.K.V., G.R., K.P.T., M.H. and D.G., and proliferation inhibition and apoptosis assays for blasts treated with Vpx-VLPs were performed by N.H., Y.H. and H.A. N.H., L.L., P.K. and T.S. designed the animal experiments. A.H. and U.W.-B. established the orthotopic AML animal model. N.H., L.L. and K.S. performed the animal experiments. N.H., I.H.M., B.T. and J.I.H. analysed TCGA and TARGET data. A.S.J. produced the expression construct, and O.L. purified recombinant SAMHD1. A.-S.J., T.L., S.G.R. and C.B.J.P. established the in vitro SAMHD1 activity assay, and subsequent experiments were performed by S.G.R. and C.B.J.P. N.H., S.G.R., B.D.G.P. and A.H. conceived the ara-CTP pool and ara-C DNA incorporation assays, and the respective experiments were performed by A.H. and B.D.G.P. S.G.R. and J.M.C.-M. performed DNA damage-response experiments. S.G.R. performed DNA content analysis. N.H., J.K., L.B. and T.S. performed kinetic analysis on Vpx-mediated SAMHD1 degradation.

Corresponding authors

Correspondence to Nikolas Herold or Torsten Schaller.

Ethics declarations

Competing interests

T.L. is presently employed with AstraZeneca.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herold, N., Rudd, S., Ljungblad, L. et al. Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies. Nat Med 23, 256–263 (2017). https://doi.org/10.1038/nm.4265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4265

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research