Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dickkopf-1 promotes hematopoietic regeneration via direct and niche-mediated mechanisms

Abstract

The role of osteolineage cells in regulating hematopoietic stem cell (HSC) regeneration following myelosuppression is not well understood. Here we show that deletion of the pro-apoptotic genes Bak and Bax in osterix (Osx, also known as Sp7 transcription factor 7)-expressing cells in mice promotes HSC regeneration and hematopoietic radioprotection following total body irradiation. These mice showed increased bone marrow (BM) levels of the protein dickkopf-1 (Dkk1), which was produced in Osx-expressing BM cells. Treatment of irradiated HSCs with Dkk1 in vitro increased the recovery of both long-term repopulating HSCs and progenitor cells, and systemic administration of Dkk1 to irradiated mice increased hematopoietic recovery and improved survival. Conversely, inducible deletion of one allele of Dkk1 in Osx-expressing cells in adult mice inhibited the recovery of BM stem and progenitor cells and of complete blood counts following irradiation. Dkk1 promoted hematopoietic regeneration via both direct effects on HSCs, in which treatment with Dkk1 decreased the levels of mitochondrial reactive oxygen species and suppressed senescence, and indirect effects on BM endothelial cells, in which treatment with Dkk1 induced epidermal growth factor (EGF) secretion. Accordingly, blockade of the EGF receptor partially abrogated Dkk1-mediated hematopoietic recovery. These data identify Dkk1 as a regulator of hematopoietic regeneration and demonstrate paracrine cross-talk between BM osteolineage cells and endothelial cells in regulating hematopoietic reconstitution following injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deletion of Bak and Bax in Osx+ BM cells radioprotects hematopoietic stem and progenitor cells.
Figure 2: Dkk1 promotes hematopoietic regeneration in vitro and in vivo.
Figure 3: Inhibition or deficiency of Dkk1 in Osx-expressing BM cells suppresses hematopoietic regeneration.
Figure 4: Dkk1 suppresses HSC senescence following irradiation and induces EGF secretion by BM ECs.

Similar content being viewed by others

References

  1. Ding, L., Saunders, T.L., Enikolopov, G. & Morrison, S.J. Endothelial and perivascular cells maintain hematopoietic stem cells. Nature 481, 457–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ding, L. & Morrison, S.J. Hematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Greenbaum, A. et al. CXCL12 in early mesenchymal progenitors is required for hematopoietic stem cell maintenance. Nature 495, 227–230 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Méndez-Ferrer, S. et al. Mesenchymal and hematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pinho, S. et al. PDGFR-α and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J. Exp. Med. 210, 1351–1367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mizoguchi, T. et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev. Cell 29, 340–349 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kunisaki, Y. et al. Arteriolar niches maintain hematopoietic stem cell quiescence. Nature 502, 637–643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Calvi, L.M. et al. Osteoblastic cells regulate the hematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, J. et al. Identification of the hematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Visnjic, D. et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103, 3258–3264 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Kiel, M.J., Acar, M., Radice, G.L. & Morrison, S.J. Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell 4, 170–179 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Park, D. et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10, 259–272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maes, C. et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev. Cell 19, 329–344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raaijmakers, M.H. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukemia. Nature 464, 852–857 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Doan, P.L. et al. Tie2+ bone marrow endothelial cells regulate hematopoietic stem cell regeneration following radiation injury. Stem Cells 31, 327–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Himburg, H.A. et al. Pleiotrophin regulates the retention and self-renewal of hematopoietic stem cells in the bone marrow vascular niche. Cell Rep. 2, 964–975 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hooper, A.T. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4, 263–274 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Himburg, H.A. et al. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat. Med. 16, 475–482 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Doan, P.L. et al. Epidermal growth factor regulates hematopoietic regeneration after radiation injury. Nat. Med. 19, 295–304 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kirsch, D.G. et al. p53 controls radiation-induced gastrointestinal syndrome in mice independent of apoptosis. Science 327, 593–596 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, C. et al. Inhibition of Wnt signaling by the osteoblast-specific transcription factor osterix. Proc. Natl. Acad. Sci. USA 105, 6936–6941 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rodda, S.J. & McMahon, A.P. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133, 3231–3244 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Cho, J. et al. Purinergic P2Y receptor modulates stress-induced hematopoietic stem and progenitor cell senescence. J. Clin. Invest. 124, 3159–3171 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Freund, A., Patil, C.K. & Campisi, J. p38 MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J. 30, 1536–1548 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Mao, B. et al. Kremen proteins are dickkopf receptors that regulate Wnt–β-catenin signaling. Nature 417, 664–667 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Boudousquié, C. et al. Differences in the transduction of canonical Wnt signals demarcate effector and memory CD8 T cells with distinct recall proliferation capacity. J. Immunol. 193, 2784–2791 (2014).

    Article  PubMed  CAS  Google Scholar 

  28. Luis, T.C. et al. Canonical Wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell 9, 345–356 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Brault, V. et al. Inactivation of the β-catenin gene by Wnt1Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128, 1253–1264 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Poulos, M.G. et al. Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep. 4, 1022–1034 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Salter, A.B. et al. Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo. Blood 113, 2104–2107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Olson, T.S. et al. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood 121, 5238–5249 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dominici, M. et al. Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood 114, 2333–2343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Na Nakorn, T., Traver, D., Weissman, I.L. & Akashi, K. Myeloerythroid-restricted progenitors are sufficient to confer radioprotection and provide the majority of day 8 CFU-S. J. Clin. Invest. 109, 1579–1585 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fleming, H.E. et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2, 274–283 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Varnum-Finney, B. et al. Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. J. Clin. Invest. 121, 1207–1216 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shao, L. et al. Total body irradiation causes long-term mouse BM injury via induction of HSC premature senescence in an Ink4a- and Arf-independent manner. Blood 123, 3105–3115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of hematopoietic stem cells. Nature 431, 997–1002 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Taniguchi Ishikawa, E. et al. Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc. Natl. Acad. Sci. USA 109, 9071–9076 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mantel, C.R. et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161, 1553–1565 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Spencer, J.A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508, 269–273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Luis, T.C., Ichii, M., Brugman, M.H., Kincade, P. & Staal, F.J. Wnt signaling strength regulates normal hematopoiesis, and its de-regulation is involved in leukemia development. Leukemia 26, 414–421 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, I.G. et al. Disturbance of DKK1 level is partly involved in survival of lung cancer cells via regulation of ROMO1 and γ-radiation sensitivity. Biochem. Biophys. Res. Commun. 443, 49–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Yoon, J.C. et al. Wnt signaling regulates mitochondrial physiology and insulin sensitivity. Genes Dev. 24, 1507–1518 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang, J. et al. Pivotal role for glycogen synthase kinase-3 in hematopoietic stem cell homeostasis in mice. J. Clin. Invest. 119, 3519–3529 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, W. et al. Apc regulates the function of hematopoietic stem cells largely through β-catenin-dependent mechanisms. Blood 121, 4063–4072 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang, J., Nguyen-McCarty, M., Hexner, E.O., Danet-Desnoyers, G. & Klein, P.S. Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nat. Med. 18, 1778–1785 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lento, W. et al. Loss of β-catenin triggers oxidative stress and impairs hematopoietic regeneration. Genes Dev. 28, 995–1004 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin, S.L. et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc. Natl. Acad. Sci. USA 107, 4194–4199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Foley, A.C. & Mercola, M. Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev. 19, 387–396 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Min, J.K. et al. The WNT antagonist dickkopf-2 promotes angiogenesis in rodent and human endothelial cells. J. Clin. Invest. 121, 1882–1893 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Famili, F. et al. High levels of canonical Wnt signaling lead to loss of stemness and increased differentiation in hematopoietic stem cells. Stem Cell Rep. 6, 652–659 (2016).

    Article  CAS  Google Scholar 

  54. Kirstetter, P., Anderson, K., Porse, B.T., Jacobsen, S.E. & Nerlov, C. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat. Immunol. 7, 1048–1056 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Scheller, M. et al. Hematopoietic stem cell and multilineage defects generated by constitutive β-catenin activation. Nat. Immunol. 7, 1037–1047 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Malhotra, S. et al. Contrasting responses of lymphoid progenitors to canonical and noncanonical Wnt signals. J. Immunol. 181, 3955–3964 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Florian, M.C. et al. A canonical to noncanonical Wnt signaling switch in hematopoietic stem cell aging. Nature 503, 392–396 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mendelson, A. & Frenette, P.S. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat. Med. 20, 833–846 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morrison, S.J. & Scadden, D.T. The bone marrow niche for hematopoietic stem cells. Nature 505, 327–334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate hematopoiesis. Nature 532, 323–328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Strecker, S., Fu, Y., Liu, Y. & Maye, P. Generation and characterization of osterix–Cherry reporter mice. Genesis 51, 246–258 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Lustig, B. et al. Negative feedback loop of Wnt signaling through upregulation of conductin (Axin2) in colorectal and liver tumors. Mol. Cell. Biol. 22, 1184–1193 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pietilä, I. et al. Secreted Wnt antagonist dickkopf-1 controls kidney papilla development coordinated by Wnt7b signaling. Dev. Biol. 353, 50–60 (2011).

    Article  PubMed  CAS  Google Scholar 

  64. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Vainio (University of Oulu) for the Dkk1FL/+ mice. This work was supported, in part, by NHLBI grant HL-086998-05 (J.P.C.), NIAID grants AI-067769-11 (J.P.C.) and AI-107333 (J.P.C.), the California Institute for Regenerative Medicine Leadership Award LA1-08014 (J.P.C.) and the NIAID Centers for Medical Countermeasures Against Radiation (CMCR) Pilot Award 2U19AI067773-11 (H.A.H.).

Author information

Authors and Affiliations

Authors

Contributions

J.P.C. conceived of and designed the study; H.A.H. designed and performed the majority of the experiments and analyzed data; P.L.D. and J.R.H. performed experiments and analyzed data; M.Q., X.Y., J.S., L.Z., G.V.H., J.K., K.A.P. and E.T. performed experiments; N.J.C. contributed to the design and interpretation of the study; and H.A.H. and J.P.C. wrote the paper.

Corresponding author

Correspondence to John P Chute.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 1109 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himburg, H., Doan, P., Quarmyne, M. et al. Dickkopf-1 promotes hematopoietic regeneration via direct and niche-mediated mechanisms. Nat Med 23, 91–99 (2017). https://doi.org/10.1038/nm.4251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4251

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research