Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

3K3A–activated protein C stimulates postischemic neuronal repair by human neural stem cells in mice

Abstract

Activated protein C (APC) is a blood protease with anticoagulant activity and cell-signaling activities mediated by the activation of protease-activated receptor 1 (F2R, also known as PAR1) and F2RL1 (also known as PAR3) via noncanonical cleavage1. Recombinant variants of APC, such as the 3K3A-APC (Lys191–193Ala) mutant in which three Lys residues (KKK191–193) were replaced with alanine, and/or its other mutants with reduced (>90%) anticoagulant activity, engineered to reduce APC-associated bleeding risk while retaining normal cell-signaling activity, have shown benefits in preclinical models of ischemic stroke2,3,4,5,6, brain trauma7, multiple sclerosis8, amyotrophic lateral sclerosis9, sepsis10,11, ischemic and reperfusion injury of heart12, kidney and liver13, pulmonary, kidney and gastrointestinal inflammation1,11, diabetes14 and lethal body radiation15. On the basis of proof-of-concept studies and an excellent safety profile in humans, 3K3A-APC has advanced to clinical trials as a neuroprotectant in ischemic stroke16,17. Recently, 3K3A-APC has been shown to stimulate neuronal production by human neural stem and progenitor cells (NSCs) in vitro18 via a PAR1–PAR3–sphingosine-1-phosphate-receptor 1–Akt pathway19, which suggests the potential for APC-based treatment as a strategy for structural repair in the human central nervous (CNS) system. Here we report that late postischemic treatment of mice with 3K3A-APC stimulates neuronal production by transplanted human NSCs, promotes circuit restoration and improves functional recovery. Thus, 3K3A-APC-potentiated neuronal recruitment from engrafted NSCs might offer a new approach to the treatment of stroke and related neurological disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Promotion of NSC-transplant survival by late 3K3A-APC treatment improves structural and functional outcomes after dMCAO.
Figure 2: 3K3A-APC stimulates the production of neuronal-like cells from transplanted NSCs after dMCAO.
Figure 3: NSC and 3K3A-APC combination therapy enables anatomical and functional improvements of dMCAO disrupted neural circuitry.
Figure 4: NSC and 3K3A-APC combination therapy improves functional integration of the transplanted human NSCs in mice.

Similar content being viewed by others

References

  1. Griffin, J.H., Zlokovic, B.V. & Mosnier, L.O. Activated protein C: biased for translation. Blood 125, 2898–2907 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cheng, T. et al. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat. Med. 9, 338–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Cheng, T. et al. Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat. Med. 12, 1278–1285 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Thiyagarajan, M., Fernández, J.A., Lane, S.M., Griffin, J.H. & Zlokovic, B.V. Activated protein C promotes neovascularization and neurogenesis in postischemic brain via protease-activated receptor 1. J. Neurosci. 28, 12788–12797 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, Y. et al. An activated protein C analog with reduced anticoagulant activity extends the therapeutic window of tissue plasminogen activator for ischemic stroke in rodents. Stroke 43, 2444–2449 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, Y. et al. Activated protein C analog protects from ischemic stroke and extends the therapeutic window of tissue-type plasminogen activator in aged female mice and hypertensive rats. Stroke 44, 3529–3536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walker, C.T. et al. Activated protein C analog with reduced anticoagulant activity improves functional recovery and reduces bleeding risk following controlled cortical impact. Brain Res. 1347, 125–131 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Han, M.H. et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451, 1076–1081 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Winkler, E.A. et al. Blood-spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc. Natl. Acad. Sci. USA 111, E1035–E1042 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taylor, F.B. Jr. et al. Protein C prevents the coagulopathic and lethal effects of Escherichia coli infusion in the baboon. J. Clin. Invest. 79, 918–925 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Esmon, C.T. Protein C anticoagulant system—anti-inflammatory effects. Semin. Immunopathol. 34, 127–132 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Loubele, S.T.B.G. et al. Activated protein C protects against myocardial ischemia/reperfusion injury via inhibition of apoptosis and inflammation. Arterioscler. Thromb. Vasc. Biol. 29, 1087–1092 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Park, S.W., Chen, S.W.C., Kim, M., D'Agati, V.D. & Lee, H.T. Human activated protein C attenuates both hepatic and renal injury caused by hepatic ischemia and reperfusion injury in mice. Kidney Int. 76, 739–750 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Isermann, B. et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat. Med. 13, 1349–1358 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Geiger, H. et al. Pharmacological targeting of the thrombomodulin-activated protein C pathway mitigates radiation toxicity. Nat. Med. 18, 1123–1129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lyden, P. et al. Phase 1 safety, tolerability and pharmacokinetics of 3K3A-APC in healthy adult volunteers. Curr. Pharm. Des. 19, 7479–7485 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Safety evaluation of 3K3A-APC in ischemic stroke (RHAPSODY); 2014 August 18; https://clinicaltrials.gov/ct2/show/NCT02222714.

  18. Wang, S. et al. Prospective identification, isolation, and profiling of a telomerase-expressing subpopulation of human neural stem cells, using sox2 enhancer-directed fluorescence-activated cell sorting. J. Neurosci. 30, 14635–14648 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo, H. et al. An activated protein C analog stimulates neuronal production by human neural progenitor cells via a PAR1-PAR3-S1PR1-Akt pathway. J. Neurosci. 33, 6181–6190 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Savitz, S.I. Cell therapies: careful translation from animals to patients. Stroke 44 (Suppl. 1), S107–S109 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Keyoung, H.M. et al. High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain. Nat. Biotechnol. 19, 843–850 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Albers, G.W. et al. Stroke Treatment Academic Industry Roundtable (STAIR) recommendations for maximizing the use of intravenous thrombolytics and expanding treatment options with intra-arterial and neuroprotective therapies. Stroke 42, 2645–2650 (2011).

    Article  PubMed  Google Scholar 

  23. Kelly, S. et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc. Natl. Acad. Sci. USA 101, 11839–11844 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taguchi, A. et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J. Clin. Invest. 114, 330–338 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao, B.-Q. et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat. Med. 12, 441–445 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Wen, Z. & Wang, P. Recombinant human erythropoietin increases cerebral cortical width index and neurogenesis following ischemic stroke. Neural Regen. Res. 7, 578–582 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, Y. et al. Activated protein C analog promotes neurogenesis and improves neurological outcome after focal ischemic stroke in mice via protease activated receptor 1. Brain Res. 1507, 97–104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abematsu, M. et al. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J. Clin. Invest. 120, 3255–3266 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vanni, M.P. & Murphy, T.H. Mesoscale transcranial spontaneous activity mapping in GCaMP3 transgenic mice reveals extensive reciprocal connections between areas of somatomotor cortex. J. Neurosci. 34, 15931–15946 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zariwala, H.A. et al. A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. J. Neurosci. 32, 3131–3141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, D., Agulhon, C., Schmidt, E., Oheim, M. & Ropert, N. New tools for investigating astrocyte-to-neuron communication. Front. Cell. Neurosci. 7, 193 (2013).

    PubMed  PubMed Central  Google Scholar 

  33. Horie, N. et al. Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells 29, 274–285 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Wurmser, A.E. et al. Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430, 350–356 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Goldman, S.A. Stem and progenitor cell-based therapy of the central nervous system: hopes, hype, and wishful thinking. Cell Stem Cell 18, 174–188 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fuchs, E.J. Transplantation tolerance: from theory to clinic. Immunol. Rev. 258, 64–79 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Markgraf, C.G. et al. Recovery of sensorimotor function after distal middle cerebral artery photothrombotic occlusion in rats. Stroke 25, 153–159 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Williams, P.D. et al. Preclinical safety and pharmacokinetic profile of 3K3A-APC, a novel, modified activated Protein C for ischemic stroke. Curr. Pharm. Des. 18, 4215–4222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bouet, V. et al. The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat. Protoc. 4, 1560–1564 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Freret, T. et al. Behavioral deficits after distal focal cerebral ischemia in mice: Usefulness of adhesive removal test. Behav. Neurosci. 123, 224–230 (2009).

    Article  PubMed  Google Scholar 

  41. Furukawa, N., Saito, M., Hakoshima, T. & Kohno, K. A diphtheria toxin receptor deficient in epidermal growth factor-like biological activity. J. Biochem. 140, 831–841 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Saito, M. et al. Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat. Biotechnol. 19, 746–750 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Ullian, E.M., Sapperstein, S.K., Christopherson, K.S. & Barres, B.A. Control of synapse number by glia. Science 291, 657–661 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the NIH grants 9R01NS090904-16 (B.V.Z.), RO1HL052246 and PO1 HL031950 (J.H.G.), R01NS75345 (S.A.G.); National Natural Science Foundation of China grant 31371116 (Y.Z.); and grants from the Adelson Medical Research Foundation, New York State Stem Cell Research Board (NYSTEM), Novo Nordisk Foundation, Lundbeck Foundation, National Multiple Sclerosis Society and ALS Association (S.A.G.).

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and Z.Z. designed and performed experiments and analyzed data; Z.Z. contributed to writing the manuscript; S.V.R., M.W. and G.S. performed experiments; Y.Z. customized the Matlab program; J.H.G. and S.A.G. edited the manuscript; S.W. and S.A.G. contributed crucial materials and comments on the text; B.V.Z. designed all experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Berislav V Zlokovic.

Ethics declarations

Competing interests

B.V.Z. is a founder of ZZ Biotech LLC, a biotechnology company with a mission to develop APC and its functional mutants for the treatment of stroke and other neurological disorders. J.H.G. is a consultant for ZZ Biotech LLC and an inventor for some uses of 3K3A-APC.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 2725 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, Z., Rege, S. et al. 3K3A–activated protein C stimulates postischemic neuronal repair by human neural stem cells in mice. Nat Med 22, 1050–1055 (2016). https://doi.org/10.1038/nm.4154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing