Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An asthma-associated IL4R variant exacerbates airway inflammation by promoting conversion of regulatory T cells to TH17-like cells

Abstract

Mechanisms by which regulatory T (Treg) cells fail to control inflammation in asthma remain poorly understood. We show that a severe asthma-associated polymorphism in the gene encoding the interleukin (IL)-4 receptor alpha chain (Il4raR576) promotes conversion of induced Treg (iTreg) cells toward a T helper 17 (TH17) cell fate. This skewing is mediated by the recruitment by IL-4RαR576 of the growth-factor-receptor-bound protein 2 (GRB2) adaptor protein, which drives IL-17 expression by activating a pathway that involves extracellular-signal-regulated kinase, IL-6 and the transcription factor STAT3. Treg cell–specific deletion of genes that regulate TH17 cell differentiation, including Il6ra and RAR-related orphan receptor gamma (Rorc), but not of Il4 or Il13, prevented exacerbated airway inflammation in mice expressing Il4raR576 (hereafter referred to as Il4raR576 mice). Furthermore, treatment of Il4raR576 mice with a neutralizing IL-6-specific antibody prevented iTreg cell reprogramming into TH17-like cells and protected against severe airway inflammation. These findings identify a previously unknown mechanism for the development of mixed TH2–TH17 cell inflammation in genetically prone individuals and point to interventions that stabilize iTreg cells as potentially effective therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Il4raR576 polymorphism promotes enhanced lung inflammation and AHR, and is associated with increased IL-17, IL-6 and IL-13 expression.
Figure 2: Defective formation and impaired suppressive function of Il4raR576 iTreg cells.
Figure 3: CCR6+ IL-17+ Il4R576 Treg cells show instability and compromised suppressive activity.
Figure 4: IL-4RαR576 activates GRB2-coupled MAPK.
Figure 5: Naive CD4+ Tconv cells from subjects with asthma bearing the IL4RR576 mutation show defective induction of iTreg cells and their skewing toward a TH17-like phenotype.
Figure 6: Treg cell lineage–specific deletion of Rorc reverses the aggravated airway inflammation in Il4raR576 mice.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Lambrecht, B.N. & Hammad, H. The immunology of asthma. Nat. Immunol. 16, 45–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Mamessier, E. et al. T cell activation during exacerbations: a longitudinal study in refractory asthma. Allergy 63, 1202–1210 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Hartl, D. et al. Quantitative and functional impairment of pulmonary CD4+CD25hi regulatory T cells in pediatric asthma. J. Allergy Clin. Immunol. 119, 1258–1266 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Lloyd, C.M. & Hawrylowicz, C.M. Regulatory T cells in asthma. Immunity 31, 438–449 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dominguez-Villar, M., Baecher-Allan, C.M. & Hafler, D.A. Identification of T helper type 1–like, FOXP3+ regulatory T cells in human autoimmune disease. Nat. Med. 17, 673–675 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krishnamoorthy, N. et al. Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma. Nat. Med. 18, 1525–1530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Oldenhove, G. et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31, 772–786 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Noval Rivas, M. et al. Regulatory T cell reprogramming toward a TH2 cell–like lineage impairs oral tolerance and promotes food allergy. Immunity 42, 512–523 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Gour, N. & Wills-Karp, M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine 75, 68–78 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tachdjian, R. et al. In vivo regulation of the allergic response by the IL-4 receptor alpha chain immunoreceptor tyrosine–based inhibitory motif. J. Allergy Clin. Immunol. 125, 1128–1136.e8 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chatila, T.A. Interleukin-4 receptor signaling pathways in asthma pathogenesis. Trends Mol. Med. 10, 493–499 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Hershey, G.K., Friedrich, M.F., Esswein, L.A., Thomas, M.L. & Chatila, T.A. The association of atopy with a gain-of-function mutation in the alpha subunit of the interleukin-4 receptor. N. Engl. J. Med. 337, 1720–1725 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Wenzel, S.E. et al. IL-4Rα mutations are associated with asthma exacerbations and mast cell–IgE expression. Am. J. Respir. Crit. Care Med. 175, 570–576 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Rosa-Rosa, L., Zimmermann, N., Bernstein, J.A., Rothenberg, M.E. & Khurana Hershey, G.K. The R576 IL-4 receptor alpha allele correlates with asthma severity. J. Allergy Clin. Immunol. 104, 1008–1014 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Al-Muhsen, S. et al. IL-4 receptor alpha single-nucleotide polymorphisms rs1805010 and rs1801275 are associated with increased risk of asthma in a Saudi Arabian population. Ann. Thorac. Med. 9, 81–86 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tachdjian, R. et al. Pathogenicity of a disease-associated human IL-4 receptor allele in experimental asthma. J. Exp. Med. 206, 2191–2204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xia, M. et al. Vehicular exhaust particles promote allergic airway inflammation through an aryl hydrocarbon receptor–notch signaling cascade. J. Allergy Clin. Immunol. 136, 441–453 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ryan, J.J., McReynolds, L.J., Huang, H., Nelms, K. & Paul, W.E. Characterization of a mobile Stat6 activation motif in the human IL-4 receptor. J. Immunol. 161, 1811–1821 (1998).

    CAS  PubMed  Google Scholar 

  20. Wang, H.Y. et al. Cutting edge: effects of an allergy-associated mutation in the human IL-4R alpha (Q576R) on human IL-4-induced signal transduction. J. Immunol. 162, 4385–4389 (1999).

    CAS  PubMed  Google Scholar 

  21. Al-Ramli, W. et al. TH17-associated cytokines (IL-17A and IL-17F) in severe asthma. J. Allergy Clin. Immunol. 123, 1185–1187 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, Y.H. et al. A novel subset of CD4+ TH2 memory and effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J. Exp. Med. 207, 2479–2491 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cosmi, L. et al. Identification of a novel subset of human circulating memory CD4+ T cells that produce both IL-17A and IL-4. J. Allergy Clin. Immunol. 125, 222–30.e1–4 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Irvin, C. et al. Increased frequency of dual-positive TH2–TH17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma. J. Allergy Clin. Immunol. 134, 1175–1186.e7 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thornton, A.M. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433–3441 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Hirota, K. et al. Preferential recruitment of CCR6-expressing TH17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med. 204, 2803–2812 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Duhen, T., Duhen, R., Lanzavecchia, A., Sallusto, F. & Campbell, D.J. Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector TH cells. Blood 119, 4430–4440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weiss, J.M. et al. Neuropilin-1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ Treg cells. J. Exp. Med. 209, 1723–1742, S1 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yadav, M. et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J. Exp. Med. 209, 1713–1722, S1–S19 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yosef, N. et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature 496, 461–468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu, X. et al. TH17 cell differentiation is regulated by the circadian clock. Science 342, 727–730 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hou, L. et al. The protease cathepsin L regulates TH17 cell differentiation. J. Autoimmun. 65, 56–63 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kessels, H.W., Ward, A.C. & Schumacher, T.N. Specificity and affinity motifs for Grb2 SH2–ligand interactions. Proc. Natl. Acad. Sci. USA 99, 8524–8529 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rojas, J.M., Oliva, J.L. & Santos, E. Mammalian son of sevenless guanine nucleotide exchange factors: old concepts and new perspectives. Genes Cancer 2, 298–305 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ray, A. & Prefontaine, K.E. Physical association and functional antagonism between the p65 subunit of transcription factor NF-κB and the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 91, 752–756 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vanden Berghe, W. et al. Signal transduction by tumor necrosis factor and gene regulation of the inflammatory cytokine interleukin-6. Biochem. Pharmacol. 60, 1185–1195 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Yang, X.O. et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem. 282, 9358–9363 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Maneechotesuwan, K. et al. Regulation of TH2 cytokine genes by p38 MAPK–mediated phosphorylation of GATA-3. J. Immunol. 178, 2491–2498 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Saleh, A., Shan, L., Halayko, A.J., Kung, S. & Gounni, A.S. Critical role for STAT3 in IL-17A-mediated CCL11 expression in human airway smooth muscle cells. J. Immunol. 182, 3357–3365 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Mathew, A. et al. Signal transducer and activator of transcription 6 controls chemokine production and T helper cell type 2 cell trafficking in allergic pulmonary inflammation. J. Exp. Med. 193, 1087–1096 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoshino, A. et al. STAT6-mediated signaling in TH2-dependent allergic asthma: critical role for the development of eosinophilia, airway hyper-responsiveness and mucus hypersecretion, distinct from its role in TH2 differentiation. Int. Immunol. 16, 1497–1505 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Ivanov, I.I. et al. The orphan nuclear receptor ROR-γt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Ford, A.Q., Heller, N.M., Stephenson, L., Boothby, M.R. & Keegan, A.D. An atopy-associated polymorphism in the ectodomain of the IL-4Rα chain (V50) regulates the persistence of STAT6 phosphorylation. J. Immunol. 183, 1607–1616 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Stephenson, L., Johns, M.H., Woodward, E., Mora, A.L. & Boothby, M. An IL-4Rα allelic variant, I50, acts as a gain-of-function variant relative to V50 for Stat6, but not TH2 differentiation. J. Immunol. 173, 4523–4528 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Kudo, M. et al. IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nat. Med. 18, 547–554 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McKinley, L. et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyper-responsiveness in mice. J. Immunol. 181, 4089–4097 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Woodruff, P.G. et al. T helper type 2–driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med. 180, 388–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bhakta, N.R. & Erle, D.J. IL-17 and 'TH2high' asthma: adding fuel to the fire? J. Allergy Clin. Immunol. 134, 1187–1188 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Muraro, A. et al. Precision medicine in patients with allergic diseases: airway diseases and atopic dermatitis—PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma and Immunology. J. Allergy Clin. Immunol. 137, 1347–1358 (2016).

    Article  PubMed  Google Scholar 

  52. Wenzel, S. et al. Dupilumab in persistent asthma with elevated eosinophil levels. N. Engl. J. Med. 368, 2455–2466 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Samson, M. et al. Brief report: inhibition of interleukin-6 function corrects TH17/Treg cell imbalance in patients with rheumatoid arthritis. Arthritis Rheum. 64, 2499–2503 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Haribhai, D. et al. Regulatory T cells dynamically control the primary immune response to foreign antigen. J. Immunol. 178, 2961–2972 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Zhou, X. et al. Selective miRNA disruption in Treg cells leads to uncontrolled autoimmunity. J. Exp. Med. 205, 1983–1991 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Voehringer, D., Wu, D., Liang, H.E. & Locksley, R.M. Efficient generation of long-distance conditional alleles using recombineering and a dual selection strategy in replicate plates. BMC Biotechnol. 9, 69 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rubtsov, Y.P. et al. Regulatory T cell–derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. McFarland-Mancini, M.M. et al. Differences in wound healing in mice with deficiency of IL-6 versus IL-6 receptor. J. Immunol. 184, 7219–7228 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Blaeser, F. et al. Targeted inactivation of the IL-4 receptor alpha chain I4R motif promotes allergic airway inflammation. J. Exp. Med. 198, 1189–1200 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carrera, P., Righetti, P.G., Gelfi, C. & Ferrari, M. Amplification refractory mutation system analysis of point mutations by capillary electrophoresis. Methods Mol. Biol. 163, 95–108 (2001).

    CAS  PubMed  Google Scholar 

  61. Charbonnier, L.M., Wang, S., Georgiev, P., Sefik, E. & Chatila, T.A. Control of peripheral tolerance by regulatory T cell–intrinsic Notch signaling. Nat. Immunol. 16, 1162–1173 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  Google Scholar 

  63. Anders, S., Pyl, P.T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. National Asthma Education and Prevention Program. Expert panel report 3 (EPR-3): guidelines for the diagnosis and management of asthma—summary report 2007. J. Allergy Clin. Immunol. 120, S94–S138 (2007).

  66. Little, S. Amplification-refractory mutation system (ARMS) analysis of point mutations. Curr. Protoc. Hum. Genet. 7, 9.8 (2001).

    Google Scholar 

Download references

Acknowledgements

This work was supported by a National Institutes of Health grants R01 AI065617 (T.A.C.), U10HL098102 (W.P.) and U10HL109172 (W.P.). We thank E. Crestani, D. Schierembergg and A. Cunningham for help with patient recruitment, and H.C. Oettgen and L.-M. Charbonnier for their critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.A.C. conceived of the project and directed the research; A.H.M. and T.A.C. designed the experiments and evaluated the data; W.P. provided blood samples from subjects with asthma and discussed results; A.M. performed the experiments and prepared the figures; L.-M.C. performed epigenetic studies; D.L. and M.P. performed gene expression profiling studies; and A.M. and T.A.C. wrote the manuscript.

Corresponding author

Correspondence to Talal A Chatila.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Supplementary Tables 1–2 (PDF 8733 kb)

Supplementary Dataset 1

Gene expression profiles of CCR6– versus CCR6+ Treg cells collected from lungs of OVA-sensitized and challenged Il4R576 mice. (XLSX 1685 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massoud, A., Charbonnier, LM., Lopez, D. et al. An asthma-associated IL4R variant exacerbates airway inflammation by promoting conversion of regulatory T cells to TH17-like cells. Nat Med 22, 1013–1022 (2016). https://doi.org/10.1038/nm.4147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing