Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin

A Corrigendum to this article was published on 04 August 2016

This article has been updated

Abstract

Cholera toxin (CT) is a potent adjuvant for inducing mucosal immune responses. However, the mechanism by which CT induces adjuvant activity remains unclear. Here we show that the microbiota is critical for inducing antigen-specific IgG production after intranasal immunization. After mucosal vaccination with CT, both antibiotic-treated and germ-free (GF) mice had reduced amounts of antigen-specific IgG, smaller recall-stimulated cytokine responses, impaired follicular helper T (TFH) cell responses and reduced numbers of plasma cells. Recognition of symbiotic bacteria via the nucleotide-binding oligomerization domain containing 2 (Nod2) sensor in cells that express the integrin CD11c (encoded by Itgax) was required for the adjuvanticity of CT. Reconstitution of GF mice with a Nod2 agonist or monocolonization with Staphylococcus sciuri, which has high Nod2-stimulatory activity, was sufficient to promote robust CT adjuvant activity, whereas bacteria with low Nod2-stimulatory activity did not. Mechanistically, CT enhanced Nod2-mediated cytokine production in dendritic cells via intracellular cyclic AMP. These results show a role for the microbiota and the intracellular receptor Nod2 in promoting the mucosal adjuvant activity of CT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Symbiotic bacteria promote the adjuvant activity of cholera toxin after nasal immunization.
Figure 2: The adjuvant activity of CT is mediated by CD11c+ cells via Nod2.
Figure 3: Nod2 is required for the generation of TFH and plasma cells after nasal immunization with antigen and CT.
Figure 4: CT enhances MDP-induced cytokine production in DCs.
Figure 5: CT promotes Nod2 activation via cAMP–PKA signaling.
Figure 6: Nod2-stimulatory bacteria promote the adjuvant activity of CT.

Similar content being viewed by others

Change history

  • 26 May 2016

    In the version of this article initially published, Mathias Chamaillard was inadvertently omitted from the list of authors and from the Author Contributions section. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Freytag, L.C. & Clements, J.D. Mucosal adjuvants. Vaccine 23, 1804–1813 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Elson, C.O. & Ealding, W. Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J. Immunol. 132, 2736–2741 (1984).

    CAS  PubMed  Google Scholar 

  3. Porgador, A., Staats, H.F., Itoh, Y. & Kelsall, B.L. Intranasal immunization with cytotoxic T lymphocyte epitope peptide and mucosal adjuvant cholera toxin: selective augmentation of peptide-presenting dendritic cells in nasal-mucosa-associated lymphoid tissue. Infect. Immun. 66, 5876–5881 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sunahara, R.K., Dessauer, C.W., Whisnant, R.E., Kleuss, C. & Gilman, A.G. Interaction of Gsα with the cytosolic domains of mammalian adenylyl cyclase. J. Biol. Chem. 272, 22265–22271 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Lycke, N., Tsuji, T. & Holmgren, J. The adjuvant effect of Vibrio cholerae and Escherichia coli heat-labile enterotoxins is linked to their ADP-ribosyltransferase activity. Eur. J. Immunol. 22, 2277–2281 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Williamson, E., Westrich, G.M. & Viney, J.L. Modulating dendritic cells to optimize mucosal immunization protocols. J. Immunol. 163, 3668–3675 (1999).

    CAS  PubMed  Google Scholar 

  7. Datta, S.K. et al. Mucosal adjuvant activity of cholera toxin requires TH17 cells and protects against inhalation anthrax. Proc. Natl. Acad. Sci. USA 107, 10638–10643 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Braun, M.C., He, J., Wu, C.Y. & Kelsall, B.L. Cholera toxin suppresses interleukin (IL)-12 production and IL-12 receptor β1 and β2 chain expression. J. Exp. Med. 189, 541–552 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu-Amano, J. et al. Helper T cell subsets for immunoglobulin A responses: oral immunization with tetanus toxoid and cholera toxin as adjuvant selectively induces TH2 cells in mucosa-associated tissues. J. Exp. Med. 178, 1309–1320 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Yamamoto, S. et al. A nontoxic mutant of cholera toxin elicits TH2-type responses for enhanced mucosal immunity. Proc. Natl. Acad. Sci. USA 94, 5267–5272 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. la Sala, A. et al. Cholera toxin inhibits IL-12 production and CD8-α+ dendritic cell differentiation by cAMP-mediated inhibition of IRF8 function. J. Exp. Med. 206, 1227–1235 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, X. et al. Divergent requirement for Gαs and cAMP in the differentiation and inflammatory profile of distinct mouse TH subsets. J. Clin. Invest. 122, 963–973 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mattsson, J. et al. Cholera toxin adjuvant promotes a balanced TH1–TH2–TH17 response independently of IL-12 and IL-17 by acting on Gsα in CD11b+ DCs. Mucosal Immunol. 8, 815–827 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Shaw, M.H., Reimer, T., Kim, Y.G. & Nuñez, G. NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr. Opin. Immunol. 20, 377–382 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem. 278, 5509–5512 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Girardin, S.E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Park, J.H. et al. RICK (RIP2) mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J. Immunol. 178, 2380–2386 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Hasegawa, M. et al. A critical role of RICK (RIP2) polyubiquitination in Nod-induced NF-κB activation. EMBO J. 27, 373–383 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Pavot, V. et al. Cutting edge: new chimeric NOD2–TLR2 adjuvant drastically increases vaccine immunogenicity. J. Immunol. 193, 5781–5785 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Magalhaes, J.G. et al. Nod2-dependent TH2 polarization of antigen-specific immunity. J. Immunol. 181, 7925–7935 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Fritz, J.H. et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26, 445–459 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Allen, E.K. et al. Characterization of the nasopharyngeal microbiota in health and during rhinovirus challenge. Microbiome 2, 22 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Warner, N. & Núñez, G. MyD88: a critical adaptor protein in innate immunity signal transduction. J. Immunol. 190, 3–4 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Kawai, T. & Akira, S. Toll-like receptors and their cross-talk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Reinhardt, R.L., Liang, H.E. & Locksley, R.M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol. 10, 385–393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eto, D. et al. IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (TFH) differentiation. PLoS One 6, e17739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Karnowski, A. et al. B and T cells collaborate in antiviral responses via IL-6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1. J. Exp. Med. 209, 2049–2064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Rooij, J. et al. Epac is a Rap1 guanine-nucleotide exchange factor directly activated by cyclic AMP. Nature 396, 474–477 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Warner, N. et al. A genome-wide siRNA screen reveals positive and negative regulators of the NOD2 and NF-κB signaling pathways. Sci. Signal. 6, rs3 (2013).

    Article  PubMed  CAS  Google Scholar 

  30. Ivanov, I.I. et al. Specific microbiota direct the differentiation of IL-17-producing T helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shulzhenko, N. et al. Cross-talk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat. Med. 17, 1585–1593 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abt, M.C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mazmanian, S.K., Round, J.L. & Kasper, D.L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Ellouz, F., Adam, A., Ciorbaru, R. & Lederer, E. Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem. Biophys. Res. Commun. 59, 1317–1325 (1974).

    Article  CAS  PubMed  Google Scholar 

  35. Magalhaes, J.G. et al. Nucleotide-oligomerization-domain-containing proteins instruct T cell helper type 2 immunity through stromal activation. Proc. Natl. Acad. Sci. USA 108, 14896–14901 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Duan, W. et al. Innate signals from Nod2 block respiratory tolerance and program TH2-driven allergic inflammation. J. Allergy Clin. Immunol. 126, 1284–1293.e10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ma, C.S. et al. Early commitment of naive human CD4+ T cells to the T follicular helper (TFH) cell lineage is induced by IL-12. Immunol. Cell Biol. 87, 590–600 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Schmitt, N. et al. Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12. Immunity 31, 158–169 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang, V., Jiang, B., Tate, J., Parashar, U.D. & Patel, M.M. Performance of rotavirus vaccines in developed and developing countries. Hum. Vaccin. 6, 532–542 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Levine, M.M. Immunogenicity and efficacy of oral vaccines in developing countries: lessons from a live cholera vaccine. BMC Biol. 8, 129 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lopman, B.A. et al. Understanding reduced rotavirus vaccine efficacy in low socio-economic settings. PLoS One 7, e41720 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grassly, N.C. et al. Mucosal immunity after vaccination with monovalent and trivalent oral poliovirus vaccine in India. J. Infect. Dis. 200, 794–801 (2009).

    Article  PubMed  Google Scholar 

  43. Johnson, R.A. et al. Comparison of immune responses to the O-specific polysaccharide and lipopolysaccharide of Vibrio cholerae O1 in Bangladeshi adult patients with cholera. Clin. Vaccine Immunol. 19, 1712–1721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Leung, D.T. et al. Comparison of memory B cell, antibody-secreting cell and plasma antibody responses in young children, older children and adults with infection caused by Vibrio cholerae O1 El Tor Ogawa in Bangladesh. Clin. Vaccine Immunol. 18, 1317–1325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Korpe, P.S. & Petri, W.A. Jr. Environmental enteropathy: critical implications of a poorly understood condition. Trends Mol. Med. 18, 328–336 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chattha, K.S., Vlasova, A.N., Kandasamy, S., Rajashekara, G. & Saif, L.J. Divergent immunomodulating effects of probiotics on T cell responses to oral attenuated human rotavirus vaccine and virulent human rotavirus infection in a neonatal gnotobiotic piglet disease model. J. Immunol. 191, 2446–2456 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Oh, J.Z. et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 41, 478–492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, D. et al. Suppression of allergic diarrhea in murine ovalbumin-induced allergic diarrhea model by PG102, a water-soluble extract prepared from Actinidia arguta. Int. Arch. Allergy Immunol. 150, 164–171 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Wu, H.Y., Nguyen, H.H. & Russell, M.W. Nasal lymphoid tissue (NALT) as a mucosal immune-inductive site. Scand. J. Immunol. 46, 506–513 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Franchi, L., Eigenbrod, T. & Núñez, G. Cutting edge: TNF-α mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol. 183, 792–796 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Hasegawa, M. et al. Transitions in oral and intestinal microflora composition and innate-immune-receptor-dependent stimulation during mouse development. Infect. Immun. 78, 639–650 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Ubeda, C. et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Invest. 120, 4332–4341 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grant R01 DK61707 (G.N.), the University of Michigan's Cancer Center Support grant 5 P30 CA46592 (G.N.), the DFG Cluster of Excellence 'Inflammation at Interfaces' (P.R.) and the BMBF grant TP5 (P.R.). We thank M. Zeng for critical review of the manuscript, L. Haynes for animal husbandry and the University of Michigan Germ-Free Animal Core Facility and Host Microbiome Initiative (G.N.) for support.

Author information

Authors and Affiliations

Authors

Contributions

D.K., Y.-G.K. and G.N. conceived the study. D.K. performed most of the experiments. Y.-G.K. performed several experiments. S.-U.S. and D.-J.K. helped with experiments. D.P., D.J.P. and P.R. generated and performed initial characterization of Itgax-Cre;Nod2fl/fl mice. M.C. provided critical materials. N.K., D.J.P., P.R. and N.I. helped in the design of several experiments and provided critical advice. D.K., Y.-G.K. and G.N. wrote the manuscript, with contributions from all of the authors.

Corresponding authors

Correspondence to Yun-Gi Kim or Gabriel Núñez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 (PDF 860 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Kim, YG., Seo, SU. et al. Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin. Nat Med 22, 524–530 (2016). https://doi.org/10.1038/nm.4075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4075

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology