Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/β-catenin defects in neuronal cholesterol synthesis phenotypes

Abstract

Smith-Lemli-Opitz syndrome (SLOS) is a malformation disorder caused by mutations in DHCR7, which impair the reduction of 7-dehydrocholesterol (7DHC) to cholesterol. SLOS results in cognitive impairment, behavioral abnormalities and nervous system defects, though neither affected cell types nor impaired signaling pathways are fully understood. Whether 7DHC accumulation or cholesterol loss is primarily responsible for disease pathogenesis is also unclear. Using induced pluripotent stem cells (iPSCs) from subjects with SLOS, we identified cellular defects that lead to precocious neuronal specification within SLOS derived neural progenitors. We also demonstrated that 7DHC accumulation, not cholesterol deficiency, is critical for SLOS-associated defects. We further identified downregulation of Wnt/β-catenin signaling as a key initiator of aberrant SLOS iPSC differentiation through the direct inhibitory effects of 7DHC on the formation of an active Wnt receptor complex. Activation of canonical Wnt signaling prevented the neural phenotypes observed in SLOS iPSCs, suggesting that Wnt signaling may be a promising therapeutic target for SLOS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of iPSCs from subjects with SLOS.
Figure 2: SLOS iPSCs exhibit accelerated neural differentiation and loss of pluripotency in cholesterol-deficient conditions.
Figure 3: Loss of normal DHCR7 activity induces epithelial-to-mesenchymal transition and neural differentiation of iPSCs through discrete signaling pathways.
Figure 4: 7DHC accumulation inhibits binding between canonical Wnt signaling proteins.
Figure 5: DHCR7 mutation induces the loss of functional β-catenin and causes human stem cell differentiation.
Figure 6: H1:DHCR7Mut ESCs display SLOS biochemical defects, differentiation defects, and loss of β-catenin activity.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Porter, F.D. & Herman, G.E. Malformation syndromes caused by disorders of cholesterol synthesis. J. Lipid Res. 52, 6–34 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wassif, C.A. et al. Mutations in the human sterol Δ7-reductase gene at 11q12–13 cause Smith-Lemli-Opitz syndrome. Am. J. Hum. Genet. 63, 55–62 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Spector, A.A. & Yorek, M.A. Membrane lipid composition and cellular function. J. Lipid Res. 26, 1015–1035 (1985).

    CAS  PubMed  Google Scholar 

  4. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    CAS  PubMed  Google Scholar 

  5. Jurevics, H. & Morell, P. Cholesterol for synthesis of myelin is made locally, not imported into brain. J. Neurochem. 64, 895–901 (1995).

    CAS  PubMed  Google Scholar 

  6. Mellon, S.H. Neurosteroid regulation of central nervous system development. Pharmacol. Ther. 116, 107–124 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, R.W., Conley, S.K., Gropman, A., Porter, F.D. & Baker, E.H. Brain magnetic resonance imaging findings in Smith-Lemli-Opitz syndrome. Am. J. Med. Genet. A. 161A, 2407–2419 (2013).

    PubMed  Google Scholar 

  8. Tierney, E. et al. Behavior phenotype in the RSH/Smith-Lemli-Opitz syndrome. Am. J. Med. Genet. 98, 191–200 (2001).

    CAS  PubMed  Google Scholar 

  9. Gaoua, W., Chevy, F., Roux, C. & Wolf, C. Oxidized derivatives of 7-dehydrocholesterol induce growth retardation in cultured rat embryos: a model for antenatal growth retardation in the Smith-Lemli-Opitz syndrome. J. Lipid Res. 40, 456–463 (1999).

    CAS  PubMed  Google Scholar 

  10. Xu, L., Korade, Z., Rosado, D.A. Jr., Mirnics, K. & Porter, N.A. Metabolism of oxysterols derived from nonenzymatic oxidation of 7-dehydrocholesterol in cells. J. Lipid Res. 54, 1135–1143 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Somers, A. et al. Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 28, 1728–1740 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hu, B.Y . et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Natl. Acad. Sci. USA 107, 4335–4340 (2010).

    CAS  PubMed  Google Scholar 

  13. Ludwig, T.E. et al. Derivation of human embryonic stem cells in defined conditions. Nat. Biotechnol. 24, 185–187 (2006).

    CAS  PubMed  Google Scholar 

  14. Jiang, X.S. et al. Activation of Rho GTPases in Smith-Lemli-Opitz syndrome: pathophysiological and clinical implications. Hum. Mol. Genet. 19, 1347–1357 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Elkabetz, Y. et al. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev. 22, 152–165 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cenedella, R.J. & Bierkamper, G.G. Mechanism of cataract production by 3-β(2-diethylaminoethoxy) androst-5-en-17-one hydrochloride, U18666A: an inhibitor of cholesterol biosynthesis. Exp. Eye Res. 28, 673–688 (1979).

    CAS  PubMed  Google Scholar 

  17. Gofflot, F., Kolf-Clauw, M., Clotman, F., Roux, C. & Picard, J.J. Absence of ventral cell populations in the developing brain in a rat model of the Smith-Lemli-Opitz syndrome. Am. J. Med. Genet. 87, 207–216 (1999).

    CAS  PubMed  Google Scholar 

  18. Frolov, A. et al. Cholesterol overload promotes morphogenesis of a Niemann-Pick C (NPC)-like compartment independent of inhibition of NPC1 or HE1/NPC2 function. J. Biol. Chem. 276, 46414–46421 (2001).

    CAS  PubMed  Google Scholar 

  19. Wassif, C.A. et al. Cholesterol storage defect in RSH/Smith-Lemli-Opitz syndrome fibroblasts. Mol. Genet. Metab. 75, 325–334 (2002).

    CAS  PubMed  Google Scholar 

  20. Krakowiak, P.A. et al. Lathosterolosis: an inborn error of human and murine cholesterol synthesis due to lathosterol 5-desaturase deficiency. Hum. Mol. Genet. 12, 1631–1641 (2003).

    CAS  PubMed  Google Scholar 

  21. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3–specific inhibitor. Nat. Med. 10, 55–63 (2004).

    CAS  PubMed  Google Scholar 

  22. Fernandez, A. et al. The WNT receptor FZD7 is required for maintenance of the pluripotent state in human embryonic stem cells. Proc. Natl. Acad. Sci. USA 111, 1409–1414 (2014).

    CAS  PubMed  Google Scholar 

  23. Lie, D.C. et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370–1375 (2005).

    CAS  PubMed  Google Scholar 

  24. Hirabayashi, Y. et al. The Wnt/β-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131, 2791–2801 (2004).

    CAS  PubMed  Google Scholar 

  25. Blauwkamp, T.A., Nigam, S., Ardehali, R., Weissman, I.L. & Nusse, R. Endogenous Wnt signalling in human embryonic stem cells generates an equilibrium of distinct lineage-specified progenitors. Nat. Commun. 3, 1070 (2012).

    PubMed  PubMed Central  Google Scholar 

  26. Sheng, R. et al. Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nat. Commun. 5, 4393 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sheng, R. et al. Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins. Nat. Commun. 3, 1249 (2012).

    PubMed  PubMed Central  Google Scholar 

  28. Munji, R.N., Choe, Y., Li, G., Siegenthaler, J.A. & Pleasure, S.J. Wnt signaling regulates neuronal differentiation of cortical intermediate progenitors. J. Neurosci. 31, 1676–1687 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chenn, A. & Walsh, C.A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).

    CAS  PubMed  Google Scholar 

  30. Mutch, C.A., Schulte, J.D., Olson, E. & Chenn, A. β-catenin signaling negatively regulates intermediate progenitor population numbers in the developing cortex. PLoS ONE 5, e12376 (2010).

    PubMed  PubMed Central  Google Scholar 

  31. Inestrosa, N.C. & Arenas, E. Emerging roles of Wnts in the adult nervous system. Nat. Rev. Neurosci. 11, 77–86 (2010).

    CAS  PubMed  Google Scholar 

  32. Sowers, L.P. et al. Disruption of the non-canonical Wnt gene PRICKLE2 leads to autism-like behaviors with evidence for hippocampal synaptic dysfunction. Mol. Psychiatry 18, 1077–1089 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mohn, J.L. et al. Adenomatous polyposis coli protein deletion leads to cognitive and autism-like disabilities. Mol. Psychiatry 19, 1133–1142 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mermelstein, C.S., Portilho, D.M., Mendes, F.A., Costa, M.L. & Abreu, J.G. Wnt/β-catenin pathway activation and myogenic differentiation are induced by cholesterol depletion. Differentiation 75, 184–192 (2007).

    CAS  PubMed  Google Scholar 

  35. Yamaguchi, T.P., Bradley, A., McMahon, A.P. & Jones, S. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126, 1211–1223 (1999).

    CAS  PubMed  Google Scholar 

  36. Amar, M.J. et al. 5A apolipoprotein mimetic peptide promotes cholesterol efflux and reduces atherosclerosis in mice. J. Pharmacol. Exp. Ther. 334, 634–641 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lowry, W.E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl. Acad. Sci. USA 105, 2883–2888 (2008).

    CAS  PubMed  Google Scholar 

  38. Krakowiak, P.A. et al. Mutation analysis and description of sixteen RSH/Smith-Lemli-Opitz syndrome patients: polymerase chain reaction-based assays to simplify genotyping. Am. J. Med. Genet. 94, 214–227 (2000).

    CAS  PubMed  Google Scholar 

  39. Davisson, M.T. & Akeson, E.C. An improved method for preparing G-banded chromosomes from mouse peripheral blood. Cytogenet. Cell Genet. 45, 70–74 (1987).

    CAS  PubMed  Google Scholar 

  40. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ran, F.A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xue, W. et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380–384 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Stahelin, R.V. & Cho, W. Differential roles of ionic, aliphatic, and aromatic residues in membrane-protein interactions: a surface plasmon resonance study on phospholipases A2. Biochemistry 40, 4672–4678 (2001).

    CAS  PubMed  Google Scholar 

  44. Stahelin, R.V. & Cho, W. Roles of calcium ions in the membrane binding of C2 domains. Biochem. J. 359, 679–685 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ananthanarayanan, B., Stahelin, R.V., Digman, M.A. & Cho, W. Activation mechanisms of conventional protein kinase C isoforms are determined by the ligand affinity and conformational flexibility of their C1 domains. J. Biol. Chem. 278, 46886–46894 (2003).

    CAS  PubMed  Google Scholar 

  46. Cho, W., Bittova, L. & Stahelin, R.V. Membrane binding assays for peripheral proteins. Anal. Biochem. 296, 153–161 (2001).

    CAS  PubMed  Google Scholar 

  47. Hsieh, J.C. et al. Mesd encodes an LRP5/6 chaperone essential for specification of mouse embryonic polarity. Cell 112, 355–367 (2003).

    CAS  PubMed  Google Scholar 

  48. Koyama-Honda, I. et al. Fluorescence imaging for monitoring the colocalization of two single molecules in living cells. Biophys. J. 88, 2126–2136 (2005).

    CAS  PubMed  Google Scholar 

  49. Zidovetzki, R. & Levitan, I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim. Biophys. Acta 1768, 1311–1324 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wassif, C.A. et al. Biochemical, phenotypic and neurophysiological characterization of a genetic mouse model of RSH/Smith-Lemli-Opitz syndrome. Hum. Mol. Genet. 10, 555–564 (2001).

    CAS  PubMed  Google Scholar 

  51. Ahn, S. & Joyner, A.L. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437, 894–897 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the intramural research programs of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the National Human Genome Research Institute (NHGRI), a pilot award for iPSC research from the NIH Center for Regenerative Medicine, and NIH grant GM110128 (W.C.). We thank K. Perez, N. Khezri and G.F. Rodriguez for assistance with hESC and iPSC culture. We also thank C. Toth and A. Ely for assistance with mice and sequencing. We thank A. Dutra, E. Pak and the NHGRI Cytogenetics Core for assistance with hESC and iPSC karyotyping. We thank L. (Chip) Dye and the NICHD Microscopy and Imaging Core for electron microscopy assistance. We thank B.S. Mallon (National Institute of Neurological Disorders and Stroke, NIH Stem Cell Unit), S. Kuznetsov (National Institute of Dental and Craniofacial Research, NIDCR), and P.G. Robey (NIDCR, NIH Stem Cell Unit) for experimental advice and the i19 and i21 human iPSC lines. We thank G. Mostoslavksy (Boston University) for the kind gift of the STEMCCA plasmid. We thank D. Kotton (Boston University) for the kind gift of the Cre-IRES-PuroR plasmid. We thank F. Zhang (Massachusetts Institute of Technology) for the gift of the pX330-U6-Chimeric_BB-CBh-hSpCas9 plasmid. We thank J. Mills (Children's Hospital of Philadelphia) for experimental advice, the National Heart, Lung and Blood Institute iPSC Core Facility for assistance with lathosterolosis iPSC generation, and M. Rao and K. Pfeifer for critical discussions. Finally, we would like to thank the patients and guardians who participated in the NIH clinical program and contributed to this study.

Author information

Authors and Affiliations

Authors

Contributions

K.R.F. and F.D.P. designed and directed the study, analyzed data and wrote the manuscript. K.R.F., A.N.T., P.E.O'H., N.M., I.M.W. and C.V.C. performed experiments and analyzed data. H.W. contributed to study design. C.A.W. provided assistance with GC/MS and study design. N.S.T. and W.J.P. provided support and performed statistical analysis of microarray experiments. Y.X. and W.C. designed, carried out and analyzed experiments on lipid-protein interactions.

Corresponding authors

Correspondence to Kevin R Francis or Forbes D Porter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–3 (PDF 5069 kb)

Supplementary Table 4

Gene network analysis of microarray data identify highly correlated signaling pathways associated with sterol perturbation and pluripotent signaling. (XLSX 86 kb)

41591_2016_BFnm4067_MOESM50_ESM.mov

Beating areas generated from the CWI 4F-2 SLOS iPS line. Areas of cardiomyocyte formation and rhythmic beating were observed during germ layer differentiation assays. Beating area corresponds to immunocytochemical staining positive for NKX2.5 (immature cardiomyocyte marker) in Supplementary Figure 1h. (MOV 393 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francis, K., Ton, A., Xin, Y. et al. Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/β-catenin defects in neuronal cholesterol synthesis phenotypes. Nat Med 22, 388–396 (2016). https://doi.org/10.1038/nm.4067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4067

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing