Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Modeling psychiatric disorders for developing effective treatments

Abstract

Recent advances in identifying risk-associated genes have provided unprecedented opportunities for developing animal models for psychiatric disease research with the goal of attaining translational utility to ultimately develop novel treatments. However, at this early stage, successful translation has yet to be achieved. Here we review recent advances in modeling psychiatric disease, discuss the utility and limitations of animal models, and emphasize the importance of shifting from behavioral analysis to identifying neurophysiological abnormalities, which are likely to be more conserved across species and thus may increase translatability. Looking forward, we envision that preclinical research will align with clinical research to build a common framework of comparable neurobiological abnormalities and to help form subgroups of patients on the basis of similar pathophysiology. Experimental neuroscience can then use animal models to discover mechanisms underlying distinct abnormalities and develop strategies for effective treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical approval of CNS-drugs.
Figure 2: The change in cortical fields and medial frontal cortex architecture since the last common ancestor of rodents and humans.
Figure 3: The path forward: convergence of clinical and preclinical research.

Similar content being viewed by others

References

  1. Purcell, S.M. et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506, 185–190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 179–184 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weiss, L.A., Arking, D.E., Daly, M.J. & Chakravarti, A. A genome-wide linkage and association scan reveals novel loci for autism. Nature 461, 802–808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

  5. Wang, K. et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459, 528–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maloney, S.E., Rieger, M.A. & Dougherty, J.D. Identifying essential cell types and circuits in autism spectrum disorders. Int. Rev. Neurobiol. 113, 61 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Monteiro, P. & Feng, G. Learning from animal models of obsessive-compulsive disorder. Biol. Psychiatry (2015).

  8. Willner, P. Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog. Neuropsychopharmacol. Biol. Psychiatry 10, 677–690 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. McKinney, W.T. & Bunney, W.E. Animal model of depression: I. Review of evidence: implications for research. Arch. Gen. Psychiatry 21, 240–248 (1969).

    Article  PubMed  Google Scholar 

  10. McFarlane, H.G. et al. Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav. 7, 152–163 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Silverman, J.L., Oliver, C., Karras, M., Gastrell, P. & Crawley, J. AMPAKINE enhancement of social interaction in the BTBR mouse model of autism. Neuropharmacology 64, 268–282 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Silverman, J.L., Tolu, S.S., Barkan, C.L. & Crawley, J.N. Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology 35, 976–989 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Lourenço Da Silva, A. et al. Effect of riluzole on MK-801 and amphetamine-induced hyperlocomotion. Neuropsychobiology 48, 27–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Breier, A. et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomographymethod. Proc. Natl. Acad. Sci. USA 94, 2569–2574 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nestler, E.J. & Hyman, S.E. Animal models of neuropsychiatric disorders. Nat. Neurosci. 13, 1161–1169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cardno, A.G. et al. Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch. Gen. Psychiatry 56, 162–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Caspi, A. & Moffitt, T.E. Gene-environment interactions in psychiatry: joining forces with neuroscience. Nat. Rev. Neurosci. 7, 583–590 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Kannan, G., Sawa, A. & Pletnikov, M.V. Mouse models of gene-environment interactions in schizophrenia. Neurobiol. Dis. 57, 5–11 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Klengel, T. & Binder, E.B. Epigenetics of stress-related psychiatric disorders and gene × environment interactions. Neuron 86, 1343–1357 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. McCarroll, S.A., Feng, G. & Hyman, S.E. Genome-scale neurogenetics: methodology and meaning. Nat. Neurosci. 17, 756–763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haesemeyer, M. & Schier, A.F. The study of psychiatric disease genes and drugs in zebrafish. Curr. Opin. Neurobiol. 30, 122–130 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Zweier, C. et al. CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. Am. J. Hum. Genet. 85, 655–666 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gottesman, I.I. & Gould, T.D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003).

    Article  PubMed  Google Scholar 

  24. Gould, T.D. & Gottesman, I.I. Psychiatric endophenotypes and the development of valid animal models. Genes Brain Behav. 5, 113–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Dincheva, I. et al. FAAH genetic variation enhances fronto-amygdala function in mouse and human. Nat. Commun. 6, 6395 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Mague, S.D. et al. Mouse model of OPRM1 (A118G) polymorphism has sex-specific effects on drug-mediated behavior. Proc. Natl. Acad. Sci. USA 106, 10847–10852 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, Z.-Y. et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314, 140–143 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Böckers, T.M. et al. Synaptic scaffolding proteins in rat brain. Ankyrin repeats of the multidomain Shank protein family interact with the cytoskeletal protein α-fodrin. J. Biol. Chem. 276, 40104–40112 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Peça, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Etherton, M.R., Blaiss, C.A., Powell, C.M. & Sudhof, T.C. Mouse neurexin-1α deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc. Natl. Acad. Sci. USA 106, 17998–18003 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Peñagarikano, O. et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities and core autism-related deficits. Cell 147, 235–246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clement, J.P. et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 151, 709–723 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tabuchi, K. et al. A Neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318, 71–76 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Derecki, N.C. et al. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484, 105–109 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lioy, D.T. et al. A role for glia in the progression of Rett's syndrome. Nature 475, 497–500 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, J. et al. Wild-type microglia do not reverse pathology in mouse models of Rett syndrome. Nature 521, E1–E4 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saxena, S., Brody, A.L., Schwartz, J.M. & Baxter, L.R. Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br. J. Psychiatry Suppl. 35, 26–37 (1998).

    Article  Google Scholar 

  38. Saxena, S. & Rauch, S.L. Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatr. Clin. North Am. 23, 563–586 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Burguière, E., Monteiro, P., Feng, G. & Graybiel, A.M. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science 340, 1243–1246 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Ahmari, S.E. et al. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science 340, 1234–1239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoischen, A., Krumm, N. & Eichler, E.E. Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nat. Neurosci. 17, 764–772 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rothwell, P.E. et al. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell 158, 198–212 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grabli, D. et al. Behavioural disorders induced by external globus pallidus dysfunction in primates: I. Behavioural study. Brain 127, 2039–2054 (2004).

    Article  PubMed  Google Scholar 

  44. Reiner, A., Medina, L. & Veenman, C.L. Structural and functional evolution of the basal ganglia in vertebrates. Brain Res. Brain Res. Rev. 28, 235–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Shultz, S., Opie, C. & Atkinson, Q.D. Stepwise evolution of stable sociality in primates. Nature 479, 219–222 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Bayés, A. et al. Comparative study of human and mouse postsynaptic proteomes finds high compositional conservation and abundance differences for key synaptic proteins. PLoS ONE 7, e46683 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Neale, B.M. & Sklar, P. Genetic analysis of schizophrenia and bipolar disorder reveals polygenicity but also suggests new directions for molecular interrogation. Curr. Opin. Neurobiol. 30, 131–138 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Devlin, B. & Scherer, S.W. Genetic architecture in autism spectrum disorder. Curr. Opin. Genet. Dev. 22, 229–237 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Geschwind, D.H. Genetics of autism spectrum disorders. Trends Cogn. Sci. 15, 409–416 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rujescu, D. et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum. Mol. Genet. 18, 988–996 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Ching, M.S. et al. Deletions of NRXN1 (neurexin-1) predispose to a wide spectrum of developmental disorders. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 153B, 937–947 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Marchetto, M.C. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pas¸ca, S.P. et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat. Med. 17, 1657–1662 (2011).

    Article  CAS  Google Scholar 

  54. Shcheglovitov, A. et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature 503, 267–271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wen, Z. et al. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 515, 414–418 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brennand, K.J. et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hook, V. et al. Human iPSC neurons display activity-dependent neurotransmitter secretion: Aberrant catecholamine levels in schizophrenia neurons. Stem Cell Reports 3, 531–538 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Sato, T. et al. Single Lgr5 stem cells build crypt villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Lancaster, M.A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Mariani, J. et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162, 375–390 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480, 547–551 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Espuny-Camacho, I. et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77, 440–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Hay, M., Thomas, D.W., Craighead, J.L., Economides, C. & Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 32, 40–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Insel, T. et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010).

    Article  PubMed  Google Scholar 

  66. Belzung, C. & Lemoine, M. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol. Mood Anxiety Disord. 1, 9 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ferrarelli, F. et al. Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles. Am. J. Psychiatry 167, 1339–1348 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wamsley, E.J. et al. Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation? Biol. Psychiatry 71, 154–161 (2012).

    Article  PubMed  Google Scholar 

  69. Kwon, J.S. et al. Gamma frequency–range abnormalities to auditory stimulation in schizophrenia. Arch. Gen. Psychiatry 56, 1001–1005 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Teale, P. et al. Cortical source estimates of gamma band amplitude and phase are different in schizophrenia. Neuroimage 42, 1481–1489 (2008).

    Article  PubMed  Google Scholar 

  71. Chang, X. et al. Altered default mode and fronto-parietal network subsystems in patients with schizophrenia and their unaffected siblings. Brain Res. 1562, 87–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Chai, X.J. et al. Abnormal medial prefrontal cortex resting-state connectivity in bipolar disorder and schizophrenia. Neuropsychopharmacology 36, 2009–2017 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kubicki, M. et al. A review of diffusion tensor imaging studies in schizophrenia. J. Psychiatr. Res. 41, 15–30 (2007).

    Article  PubMed  Google Scholar 

  74. Kuperberg, G.R. et al. Regionally localized thinning of the cerebral cortex in schizophrenia. Arch. Gen. Psychiatry 60, 878–888 (2003).

    Article  PubMed  Google Scholar 

  75. Shenton, M.E. et al. Abnormalities of the left temporal lobe and thought disorder in schizophrenia. N. Engl. J. Med. 327, 604–612 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Glantz, L.A. & Lewis, D.A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 57, 65–73 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Spencer, K.M. et al. Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc. Natl. Acad. Sci. USA 101, 17288–17293 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sutter, E.E. The brain response interface: communication through visually-induced electrical brain responses. J. Microcomput. Appl. 15, 31–45 (1992).

    Article  Google Scholar 

  79. Sigurdsson, T., Stark, K.L., Karayiorgou, M., Gogos, J.A. & Gordon, J.A. Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 464, 763–767 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fejgin, K. et al. A mouse model that recapitulates cardinal features of the 15q13.3 microdeletion syndrome including schizophrenia- and epilepsy-related alterations. Biol. Psychiatry 76, 128–137 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Hollander, E. et al. Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biol. Psychiatry 58, 226–232 (2005).

    Article  PubMed  Google Scholar 

  82. Okano, H. & Mitra, P. Brain-mapping projects using the common marmoset. Neurosci. Res. 93, 3–7 (2015).

    Article  PubMed  Google Scholar 

  83. Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Janak, P.H. & Tye, K.M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stephenson-Jones, M., Samuelsson, E., Ericsson, J., Robertson, B. & Grillner, S. Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. Curr. Biol. 21, 1081–1091 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Graybiel, A.M. The basal ganglia. Curr. Biol. 10, R509–R511 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Willsey, A.J. et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155, 997–1007 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, R., Romero, G., Christiansen, M.G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. de Bono, J.S. & Ashworth, A. Translating cancer research into targeted therapeutics. Nature 467, 543–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Collins, F.S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Insel, T.R. & Cuthbert, B.N. Brain disorders? Precisely. Science 348, 499–500 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Tufts Center for the Study of Drug Development. CNS drugs take longer to develop, have lower success rates, than other drugs. CSDD Impact Report 16 http://csdd.tufts.edu/news/complete_story/pr_ir_nov_dec_ir (2014).

  93. Wise, S.P. Forward frontal fields: phylogeny and fundamental function. Trends Neurosci. 31, 599–608 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cooke, D., Goldring, A., Recanzone, G.H. & Krubitzer, L. The evolution of parietal areas associated with visuomanual behavior: from grasping to tool use. in The New Visual Neurosciences (Chalupa, L. and Werner, J., eds) 1049–1063 (MIT Press, 2014).

    Google Scholar 

  95. Burman, K.J. & Rosa, M.G. Architectural subdivisions of medial and orbital frontal cortices in the marmoset monkey (Callithrix jacchus). J. Comp. Neurol. 514, 11–29 (2009).

    Article  PubMed  Google Scholar 

  96. Schmeisser, M.J. et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486, 256–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Won, H. et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486, 261–265 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Bozdagi, O. et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol. Autism 1, 15 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, X. et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum. Mol. Genet. 20, 3093–3108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang, M. et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3-null mutant mice. J. Neurosci. 32, 6525–6541 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kouser, M. et al. Loss of predominant shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission. J. Neurosci. 33, 18448–18468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Han, K. et al. SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature 503, 72–77 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen, R.Z., Akbarian, S., Tudor, M. & Jaenisch, R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat. Genet. 27, 327–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Lioy, D.T. et al. A role for glia in the progression of Rett's syndrome. Nature 475, 497–500 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kumar, M. et al. High-resolution magnetic resonance imaging for characterization of the neuroligin-3 knock-in mouse model associated with autism spectrum disorder. PLoS ONE 9, e109872 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hashimoto, T. et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J. Neurosci. 23, 6315–6326 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Frantseva, M.V. et al. Evidence for impaired long-term potentiation in schizophrenia and its relationship to motor skill learning. Cereb. Cortex. 18, 990–996 (2008).

    Article  PubMed  Google Scholar 

  108. Hasan, A. et al. Impaired long-term depression in schizophrenia: a cathodal tDCS pilot study. Brain Stimul. 5, 475–483 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Hawrot, P. Monteiro and C. Jennings for their contributions through valuable discussion and critical reading of the manuscript. T.K. is supported by the Henry E. Singleton fellowship. G.F. is supported by the US National Institute of Mental Health (5R01MH097104), the Poitras Center for Affective Disorders Research at the Massachusetts Institute of Technology (MIT), the Stanley Center for Psychiatric Research at Broad Institute of MIT and Harvard, the Nancy Lurie Marks Family Foundation, the Simons Foundation Autism Research Initiative (SFARI) and the Simons Center for the Social Brain at MIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Feng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaiser, T., Feng, G. Modeling psychiatric disorders for developing effective treatments. Nat Med 21, 979–988 (2015). https://doi.org/10.1038/nm.3935

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3935

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing