The extent of tumor heterogeneity is an emerging theme that researchers are only beginning to understand. How genetic and epigenetic heterogeneity affects tumor evolution and clinical progression is unknown. The precise nature of the environmental factors that influence this heterogeneity is also yet to be characterized. Nature Medicine, Nature Biotechnology and the Volkswagen Foundation organized a meeting focused on identifying the obstacles that need to be overcome to advance translational research in and tumor heterogeneity. Once these key questions were established, the attendees devised potential solutions. Their ideas are presented here.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    et al. Clinical management of breast cancer heterogeneity. Nat. Rev. Clin. Oncol. 12, 381–394 (2015).

  2. 2.

    et al. Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer 12, 323–334 (2012).

  3. 3.

    & Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27, 15–26 (2015).

  4. 4.

    et al. Identification of causal genetic drivers of human disease through systems-level analysis of regulatory networks. Cell 159, 402–414 (2014).

  5. 5.

    , & Translational value of mouse models in oncology drug development. Nat. Med. 21, 431–439 (2015).

  6. 6.

    et al. Dynamic evolution of clonal epialleles revealed by methclone. Genome Biol. 15, 472 (2014).

  7. 7.

    , & Cisplatin-induced antitumor immunomodulation: a review of preclinical and clinical evidence. Clin. Cancer Res. 20, 5384–5391 (2014).

  8. 8.

    et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 366, 925–931 (2012).

  9. 9.

    et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015).

  10. 10.

    et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci. Transl. Med. 6, 26ra32 (2014).

  11. 11.

    et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. (26 May 2015).

  12. 12.

    et al. Cancer Core Europe: a consortium to address the cancer care-cancer research continuum challenge. Eur. J. Cancer 50, 2745–2746 (2014).

  13. 13.

    et al. A community computational challenge to predict the activity of pairs of compounds. Nat. Biotechnol. 32, 1213–1222 (2014).

  14. 14.

    et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat. Med. (1 June 2015).

  15. 15.

    et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non–small cell lung cancer harboring EGFR T790M. Nat. Med. 21, 560–562 (2015).

  16. 16.

    et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014).

  17. 17.

    et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

  18. 18.

    et al. Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat. Med. 20, 93–97 (2014).

  19. 19.

    et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

  20. 20.

    et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 940–947 (2015).

  21. 21.

    et al. Proc. Natl. Acad. Sci. USA 110, 594–599 (2013).

  22. 22.

    et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

  23. 23.

    et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

  24. 24.

    , & Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science 347, 910–914 (2015).

  25. 25.

    et al. Single-molecule analysis of combinatorial epigenomic states in normal and tumor cells. Proc. Natl. Acad. Sci. USA 110, 7772–7777 (2013).

  26. 26.

    et al. The pivotal regulatory landscape of RNA modifications. Annu. Rev. Genomics. Hum. Genet. 15, 127–150 (2014).

  27. 27.

    et al. Integrated genome and transcriptome sequencing of the same cell. Nat. Biotechnol. 33, 285–289 (2015).

  28. 28.

    et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435, 1262–1266 (2005).

  29. 29.

    et al. Detection of histone modifications at specific gene loci in single cells in histological sections. Nat. Methods 10, 171–177 (2013).

  30. 30.

    et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

  31. 31.

    et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).

  32. 32.

    et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10, 442–458 (2015).

  33. 33.

    , , , & Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, 6233 (2015).

  34. 34.

    et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

  35. 35.

    et al. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin. Cancer Res. 21, 249–257 (2015).

  36. 36.

    et al. Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell 148, 362–375 (2012).

Download references


We would like to thank O. Grewe, M. Ruessman and S. Kim for their help in the organization of the meeting.

Author information


  1. Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.

    • Ash A Alizadeh
  2. Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.

    • Ash A Alizadeh
  3. Cancer Institute, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.

    • Ash A Alizadeh
  4. Nature Medicine, New York, New York, USA.

    • Victoria Aranda
    • , Christine Borowski
    •  & Hannah Stower
  5. Department of Oncology, University of Torino, Candiolo, Torino, Italy.

    • Alberto Bardelli
  6. Candiolo Cancer Institute—Fondazione del Piemonte per l'Oncologia (FPO), IRCCS, Candiolo, Torino, Italy.

    • Alberto Bardelli
  7. Université Libre de Bruxelles (ULB), Brussels, Belgium.

    • Cedric Blanpain
  8. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.

    • Christoph Bock
  9. Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.

    • Christoph Bock
  10. Department of Oncology, University of Cambridge, Cambridge, UK.

    • Carlos Caldas
  11. Department of Systems Biology, Columbia University, New York, New York, USA.

    • Andrea Califano
    •  & Dana Pe'er
  12. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.

    • Andrea Califano
  13. Department of Biomedical Informatics, Columbia University, New York, New York, USA.

    • Andrea Califano
  14. Genentech Inc., South San Francisco, California, USA.

    • Michael Doherty
  15. Nature Biotechnology, New York, New York, USA.

    • Markus Elsner
  16. Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Catalonia, Spain.

    • Manel Esteller
  17. MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK.

    • Rebecca Fitzgerald
  18. Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

    • Jan O Korbel
  19. German Cancer Research Center, DKFZ, Heidelberg, Germany.

    • Peter Lichter
  20. Weill Cornell Medical College, New York, New York, USA.

    • Christopher E Mason
  21. Department of Genetics, MD Anderson Cancer Center, Houston, Texas, USA.

    • Nicholas Navin
  22. Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, Texas, USA.

    • Nicholas Navin
    •  & Roel G W Verhaak
  23. Department of Biological Sciences, Columbia University, New York, New York, USA.

    • Dana Pe'er
  24. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.

    • Kornelia Polyak
  25. Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.

    • Charles W M Roberts
  26. Princess Margaret Cancer Centre, Toronto, Ontario, Canada.

    • Lillian Siu
  27. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

    • Alexandra Snyder
  28. University College London Cancer Institute, London, UK.

    • Charles Swanton
  29. University College London Hospitals NHS Foundation Trust, London, UK.

    • Charles Swanton
  30. The Francis Crick Institute, London, UK.

    • Charles Swanton
  31. Department of Genomic Medicine, MD Anderson Cancer Center, Houston, Texas, USA.

    • Roel G W Verhaak
  32. The Cancer Genome Atlas, Center for Cancer Genomics, National Cancer Institute, Bethesda, Maryland, USA.

    • Jean C Zenklusen
  33. Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.

    • Johannes Zuber
  34. Inserm, UMR-1162, Génomique fonctionnelle des tumeurs solides, Institut Universitaire d'Hématologie (IUH), Paris, France.

    • Jessica Zucman-Rossi


  1. Search for Ash A Alizadeh in:

  2. Search for Victoria Aranda in:

  3. Search for Alberto Bardelli in:

  4. Search for Cedric Blanpain in:

  5. Search for Christoph Bock in:

  6. Search for Christine Borowski in:

  7. Search for Carlos Caldas in:

  8. Search for Andrea Califano in:

  9. Search for Michael Doherty in:

  10. Search for Markus Elsner in:

  11. Search for Manel Esteller in:

  12. Search for Rebecca Fitzgerald in:

  13. Search for Jan O Korbel in:

  14. Search for Peter Lichter in:

  15. Search for Christopher E Mason in:

  16. Search for Nicholas Navin in:

  17. Search for Dana Pe'er in:

  18. Search for Kornelia Polyak in:

  19. Search for Charles W M Roberts in:

  20. Search for Lillian Siu in:

  21. Search for Alexandra Snyder in:

  22. Search for Hannah Stower in:

  23. Search for Charles Swanton in:

  24. Search for Roel G W Verhaak in:

  25. Search for Jean C Zenklusen in:

  26. Search for Johannes Zuber in:

  27. Search for Jessica Zucman-Rossi in:

Competing interests

A.A.A. is a cofounder of CAPP-Medical and a consultant for Roche, Genentech, CAPP-Medical and Celgene. K.P. has a sponsored research agreement and consultancy with Novartis Oncology.

Corresponding author

Correspondence to Hannah Stower.

About this article

Publication history






Further reading