Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Endothelial PI3K-C2α, a class II PI3K, has an essential role in angiogenesis and vascular barrier function

Abstract

The class II α-isoform of phosphatidylinositol 3-kinase (PI3K-C2α) is localized in endosomes, the trans-Golgi network and clathrin-coated vesicles; however, its functional role is not well understood. Global or endothelial-cell–specific deficiency of PI3K-C2α resulted in embryonic lethality caused by defects in sprouting angiogenesis and vascular maturation. PI3K-C2α knockdown in endothelial cells resulted in a decrease in the number of PI3-phosphate–enriched endosomes, impaired endosomal trafficking, defective delivery of VE-cadherin to endothelial cell junctions and defective junction assembly. PI3K-C2α knockdown also impaired endothelial cell signaling, including vascular endothelial growth factor receptor internalization and endosomal RhoA activation. Together, the effects of PI3K-C2α knockdown led to defective endothelial cell migration, proliferation, tube formation and barrier integrity. Endothelial PI3K-C2α deficiency in vivo suppressed postischemic and tumor angiogenesis and diminished vascular barrier function with a greatly augmented susceptibility to anaphylaxis and a higher incidence of dissecting aortic aneurysm formation in response to angiotensin II infusion. Thus, PI3K-C2α has a crucial role in vascular formation and barrier integrity and represents a new therapeutic target for vascular disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endothelial C2α is necessary for developmental angiogenesis.
Figure 2: C2α is required for postnatal retinal angiogenesis.
Figure 3: Tube formation, cell migration and RhoA activation are impaired in C2α-depleted HUVEC.
Figure 4: Endosomal transport, VE-cadherin assembly at cell junctions and the activation of endosomal RhoA are impaired in C2α-depleted endothelial cells.
Figure 5: Targeted deletion of endothelial C2α reduces postischemic and tumor angiogenesis.
Figure 6: C2α deficiency causes vascular hyperpermeability and dissecting aortic aneurysm formation in vivo.

Similar content being viewed by others

References

  1. Adams, R.H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8, 464–478 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Coultas, L. et al. Endothelial cells and VEGF in vascular development. Nature 438, 937–945 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Andrae, J. et al. Role of platelet-derived growth factor in physiology and medicine. Genes Dev. 22, 1276–1312 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mehta, D. & Malik, A.B. Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 86, 279–367 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Dejana, E., Tournier-Lasserve, E. & Weinstein, B.M. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev. Cell 16, 209–221 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Yoshimura, K. et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat. Med. 11, 1330–1338 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Satoh, K. et al. Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II–induced aortic aneurysms. Nat. Med. 15, 649–656 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferrara, N. & Kerbel, R.S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Engelman, J.A. et al. The evolution of phosphatidylinositol 3-kinases as regulator of growth and metabolism. Nat. Rev. Genet. 7, 606–619 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Takenawa, T. & Suetsugu, S. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat. Rev. Mol. Cell Biol. 8, 37–48 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Vanhaesebroeck, B. et al. The emerging mechanisms of isoform-specific PI3K signaling. Nat. Rev. Mol. Cell Biol. 11, 329–341 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Graupera, M. et al. Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration. Nature 453, 662–666 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Yuan, T.L. & Cantley, L.C. PI3K pathway alterations in cancer: variations on a theme. Oncogene 27, 5497–5510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Funderburk, S.F. et al. The Beclin 1–Vps34 complex at the crossroads of autophagy and beyond. Trends Cell Biol. 20, 355–362 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Falasca, M. et al. The role of phosphoinositide 3-kinase C2α in insulin signaling. J. Biol. Chem. 282, 28226–28236 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Linassier, C. et al. Molecular cloning and biochemical characterization of a Drosophila phosphatidylinositol-specific phosphoinositide 3-kinase. Biochem. J. 321, 849–856 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Domin, J. et al. The class II phosphoinositide 3-kinase PI3K–C2α is concentrated in the trans-Golgi network and present in clathrin-coated vesicles. J. Biol. Chem. 275, 11943–11950 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. El Sheikh, S.S. et al. Topographical expression of class IA and class II phosphoinositide 3-kinase enzymes in normal human tissues is consistent with a role in differentiation. BMC Clin. Pathol. 3, 4 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yoshioka, K. et al. Ca2+-induced, Rho- and Rho kinase-dependent regulation of myosin phosphatase and contraction in isolated vascular smooth muscle cells. Mol. Pharmacol. 71, 912–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Traer, C.J. et al. Are class II phosphoinositide 3-kinases potential targets for anticancer therapies? Bull. Cancer 93, E53–E58 (2006).

    PubMed  Google Scholar 

  22. Gaidarov, I. et al. Individual phosphoinositide 3-kinase C2α domain activities independently regulate clathrin function. J. Biol. Chem. 280, 40766–40772 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Falasca, M. & Maffucci, T. Role of class II phosphoinositide 3-kinase in cell signalling. Biochem. Soc. Trans. 35, 211–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Y. et al. Class II phosphoinositide 3-kinase α-isoform regulates Rho, myosin phosphatase and contraction in vascular smooth muscle. Biochem. J. 394, 581–592 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harris, D.P. et al. Requirement for class II phosphoinositide 3-kinase C2α in maintenance of glomerular structure and function. Mol. Cell. Biol. 31, 63–80 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Moses, K.A. et al. Embryonic expression of an Nkx2–5/Cre gene using ROSA26 reporter mice. Genesis 31, 176–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Kisanuki, Y.Y. et al. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev. Biol. 230, 230–242 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Pannekoek, W.J. et al. Cell-cell junction formation: the role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochim. Biophys. Acta 1788, 790–796 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Gillooly, D.J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lindmo, K. & Stenmark, H. Regulation of membrane traffic by phosphoinositide 3-kinase. J. Cell Sci. 119, 605–614 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Bryan, B.A. et al. RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis. FASEB J. 24, 3186–3196 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Cauwels, A. et al. Anaphylactic shock depends on PI3K and eNOS-derived NO. J. Clin. Invest. 116, 2244–2251 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Daugherty, A. & Cassis, L.A. Mouse models of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 24, 429–434 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Di Gennaro, A. et al. Increased expression of leukotriene C4 synthase and predominant formation of cysteinyl-leukotrienes in human abdominal aortic aneurysm. Proc. Natl. Acad. Sci. USA 107, 21093–21097 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wheeler, M. & Domin, J. The N-terminus of phosphoinositide 3-kinase–C2β regulates lipid kinase activity and binding to clathrin. J. Cell. Physiol. 206, 586–593 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Simonsen, A. & Tooze, S.A. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J. Cell Biol. 186, 773–782 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnson, E.E. et al. Gene silencing reveals a specific function of hVps34 phosphatidylinositol 3-kinase in late versus early endosomes. J. Cell Sci. 119, 1219–1232 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Doherty, G.J. & McMahon, H.T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 31.1–31.46 (2009).

    Article  Google Scholar 

  42. Zoncu, R. et al. A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136, 1110–1121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Palamidessi, A. et al. Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134, 135–147 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. van Nieuw Amerongen, G.P. et al. Involvement of Rho kinase in endothelial barrier maintenance. Arterioscler. Thromb. Vasc. Biol. 27, 2332–2339 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Yamada, S. & Nelson, W.J. Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion. J. Cell Biol. 178, 517–527 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harris, T.J.C. & Tepass, U. Adherens junctions: from molecules to morphogenesis. Nat. Rev. Mol. Cell Biol. 11, 502–514 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Abraham, S. et al. VE-cadherin–mediated cell-cell interaction suppresses sprouting via signaling to MLC2 phosphorylation. Curr. Biol. 19, 668–674 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Noda, K. et al. Vascular endothelial-cadherin stabilizes at cell-cell junctions by anchoring to circumferential actin bundles through α- and β-catenins in cyclic AMP-Epac-Rap1 signal-activated endothelial cells. Mol. Biol. Cell 21, 584–596 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Webb, D.J., Parsons, J.T. & Horwits, A.F. Adhesion assembly, disassembly and turnover in migrating cells—over and over and over again. Nat. Cell Biol. 4, E97–E100 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Mitra, S.K., Hanson, D.A. & Schlaepfer, D.D. Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol 6, 56–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Shivas, J.M. et al. Polarity and endocytosis: reciprocal regulation. Trends Cell Biol. 20, 445–452 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sörensen, I., Adams, R.H. & Gossler, A. Dll1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood 113, 5680–5688 (2009).

    Article  PubMed  Google Scholar 

  53. Bazigou, E. et al. Integrin-α9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev. Cell 17, 175–186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Takakura, N. et al. Critical role of the TIE2 endothelial cell receptor in the development of definitive hematopoiesis. Immunity 9, 677–686 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Benedito, R. et al. The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124–1135 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Compagni, A. et al. Control of skeletal patterning by ephrinB1-EphB interactions. Dev. Cell 5, 217–230 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Oyama, O. et al. The lysophospholipid mediator sphingosine-1-phosphate promotes angiogenesis in vivo in ischemic hindlimbs of mice. Cardiovasc. Res. 78, 301–307 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Du, W. et al. S1P2, the G protein–coupled receptor for sphingosine-1-phosphate, negatively regulates tumor angiogenesis and tumor growth in vivo in mice. Cancer Res. 70, 772–781 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Deng, G.G. et al. Urokinase-type plasminogen activator plays a critical role in angiotensin II–induced abdominal aortic aneurysm. Circ. Res. 92, 510–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Okamoto, H. et al. Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Mol. Cell. Biol. 20, 9247–9261 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Mitsumori for comments on the histological study. We thank N. Mochizuki and K. Ando for assistance with the FRET imaging analysis. We thank N. Furusawa, K. Sunagawa and E. Kaneko for assistance with live-cell imaging using a Yokogawa confocal microscope system. We also thank Y. Ohta and T. Murakawa for technical assistance and T. Hirose for administrative assistance. C2α complementary DNA was obtained from J. Domin (Imperial College London). GFP-2 × FYVE and mRFP-2 × FYVE expression vectors were obtained from H. Stenmark (Oslo University Hospital) and Y. Ohsumi (Tokyo Institute of Technology), respectively. VE-cadherin-GFP expression vectors were obtained from N. Mochizuki (National Cerebral and Cardiovascular Center). The pRaichu-RhoA probe was obtained from M. Matsuda (Kyoto University). GFP-RhoAAsn19 and GFP-RhoAVal14 expression vectors were obtained from F. Valderrama (King's College London). This work was supported in part by grants-in-aid from the Japanese Ministry of Education, Culture, Sports, Science and Technology, the Japan Society for the Promotion of Science (to K. Yoshioka, N. Takuwa, Y.O. and Y.T.), the Honjin Foundation, the Mitsubishi Pharma Research Foundation and the SENSIN Medical Research Foundation (to K. Yoshioka).

Author information

Authors and Affiliations

Authors

Contributions

K. Yoshioka designed the experiments, performed characterization of the developmental and retinal angiogenesis of the conditional knockout mice and most of the in vitro studies and analyzed the data with assistance from N. Takuwa, Y.O., W.D., S.A., H.M., C.N., K.B., M.U., N. Takakura and O.M. K.A. and T.S. analyzed the cellular content of phosphoinositides. K. Yoshida performed in vivo angiogenenesis experiments with K. Yoshioka, performed tumor implantation and aneurysm experiments and interpreted the results. H.C. performed the anaphylaxis experiments. W.D. performed the in vivo permeability study. X.Q. and Y.O. performed and interpreted the results of the ischemic angiogenesis model. T.W. and S.I. performed and interpreted the results of electron microscopy. K.S., M.A., N. Takuwa, R.J.S., H.O. and R.H.A. generated mouse mutants. K. Yoshioka and Y.T. planned and supervised the experiments, arranged the figures and wrote the manuscript. M.A. and N. Takuwa participated in writing the manuscript (M.A. wrote part of the Online Methods, and N. Takuwa wrote the Abstract, Introduction and Results sections).

Corresponding author

Correspondence to Yoh Takuwa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–20, Supplementary Tables 1–7 and Supplementary Methods (PDF 5179 kb)

Supplementary Video 1

Time-lapse imaging of GFP-C2α and mRFP-2xFYVE in HUVEC. (MOV 1720 kb)

Supplementary Video 2

Trafficking of the intracellular GFP-2xFYVE-positive endosomes in control HUVEC. (MOV 1755 kb)

Supplementary Video 3

Trafficking of the intracellular GFP-2xFYVE-positive endosomes in C2α-depleted HUVEC. (MOV 1880 kb)

Supplementary Video 4

Trafficking of VE-cadherin-GFP in control HUVEC. (MOV 3672 kb)

Supplementary Video 5

Trafficking of VE-cadherin-GFP in C2α-depleted HUVEC. (MOV 2159 kb)

Supplementary Video 6

Trafficking of VE-cadherin-GFP in adeno-RhoAN19-infected HUVEC. (MOV 839 kb)

Supplementary Video 7

RhoA FRET imaging in control HUVEC. (MOV 1741 kb)

Supplementary Video 8

RhoA FRET imaging in C2α-depleted HUVEC. (MOV 1807 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshioka, K., Yoshida, K., Cui, H. et al. Endothelial PI3K-C2α, a class II PI3K, has an essential role in angiogenesis and vascular barrier function. Nat Med 18, 1560–1569 (2012). https://doi.org/10.1038/nm.2928

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2928

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing