Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals

A Corrigendum to this article was published on 06 December 2012

This article has been updated

Abstract

The role of skeletal muscle in nonshivering thermogenesis (NST) is not well understood. Here we show that sarcolipin (Sln), a newly identified regulator of the sarco/endoplasmic reticulum Ca2+-ATPase (Serca) pump1,2,3,4,5, is necessary for muscle-based thermogenesis. When challenged to acute cold (4 °C), Sln−/− mice were not able to maintain their core body temperature (37 °C) and developed hypothermia. Surgical ablation of brown adipose tissue and functional knockdown of Ucp1 allowed us to highlight the role of muscle in NST. Overexpression of Sln in the Sln-null background fully restored muscle-based thermogenesis, suggesting that Sln is the basis for Serca-mediated heat production. We show that ryanodine receptor 1 (Ryr1)-mediated Ca2+ leak is an important mechanism for Serca-activated heat generation. Here we present data to suggest that Sln can continue to interact with Serca in the presence of Ca2+, which can promote uncoupling of the Serca pump and cause futile cycling. We further show that loss of Sln predisposes mice to diet-induced obesity, which suggests that Sln-mediated NST is recruited during metabolic overload. These data collectively suggest that SLN is an important mediator of muscle thermogenesis and whole-body energy metabolism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sln−/− mice are not able to maintain optimal core temperature (37 °C) and develop hypothermia when challenged with acute cold.
Figure 2: Reintroduction of Sln in Sln−/− mice completely restores thermogenesis, and Sln is necessary for muscle-based NST.
Figure 3: Molecular basis of Sln-mediated thermogenesis.
Figure 4: Sln−/− mice are prone to develop obesity when fed HFD.

Similar content being viewed by others

Change history

  • 06 December 2012

     The authors would like to add two co-authors, A. Russell Tupling and Eric Bombardier, to the study. The author list, Acknowledgments and Author Contributions have been corrected in the HTML and PDF versions of this article.

References

  1. Asahi, M. et al. Cardiac-specific overexpression of sarcolipin inhibits sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) activity and impairs cardiac function in mice. Proc. Natl. Acad. Sci. USA 101, 9199–9204 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Asahi, M. et al. Sarcolipin regulates sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) by binding to transmembrane helices alone or in association with phospholamban. Proc. Natl. Acad. Sci. USA 100, 5040–5045 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Babu, G.J. et al. Targeted overexpression of sarcolipin in the mouse heart decreases sarcoplasmic reticulum calcium transport and cardiac contractility. J. Biol. Chem. 281, 3972–3979 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Babu, G.J. et al. Ablation of sarcolipin enhances sarcoplasmic reticulum calcium transport and atrial contractility. Proc. Natl. Acad. Sci. USA 104, 17867–17872 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Babu, G.J. et al. Overexpression of sarcolipin decreases myocyte contractility and calcium transient. Cardiovasc. Res. 65, 177–186 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Block, B.A. Thermogenesis in muscle. Annu. Rev. Physiol. 56, 535–577 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Silva, J.E. Physiological importance and control of non-shivering facultative thermogenesis. Front. Biosci. (Schol. Ed.) 3, 352–371 (2011).

    Article  Google Scholar 

  8. Enerbäck, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    Article  PubMed  Google Scholar 

  9. Dawkins, M.J. & Scopes, J.W. Non-shivering thermogenesis and brown adipose tissue in the human new-born infant. Nature 206, 201–202 (1965).

    Article  CAS  PubMed  Google Scholar 

  10. Cannon, B. & Nedergaard, J. Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans). Int. J. Obes. (Lond.) 34 (suppl. 1), S7–S16 (2010).

    Article  CAS  Google Scholar 

  11. Kjelstrup, S., Barragan, D. & Bedeaux, D. Coefficients for active transport and thermogenesis of Ca2+-ATPase isoforms. Biophys. J. 96, 4376–4386 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anunciado-Koza, R.P. et al. Inactivation of the mitochondrial carrier SLC25A25 (ATP-Mg2+/Pi transporter) reduces physical endurance and metabolic efficiency in mice. J. Biol. Chem. 286, 11659–11671 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Block, B.A. & Franzini-Armstrong, C. The structure of the membrane systems in a novel muscle cell modified for heat production. J. Cell Biol. 107, 1099–1112 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Block, B.A., O'Brien, J. & Meissner, G. Characterization of the sarcoplasmic reticulum proteins in the thermogenic muscles of fish. J. Cell Biol. 127, 1275–1287 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Morrissette, J.M., Franck, J.P. & Block, B.A. Characterization of ryanodine receptor and Ca2+-ATPase isoforms in the thermogenic heater organ of blue marlin (Makaira nigricans). J. Exp. Biol. 206, 805–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. da Costa, D.C. & Landeira-Fernandez, A.M. Thermogenic activity of the Ca2+-ATPase from blue marlin heater organ: regulation by KCl and temperature. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1460–R1468 (2009).

    Article  PubMed  Google Scholar 

  17. MacLennan, D.H. Ca2+ signalling and muscle disease. Eur. J. Biochem. 267, 5291–5297 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Smith, W.S., Broadbridge, R., East, J.M. & Lee, A.G. Sarcolipin uncouples hydrolysis of ATP from accumulation of Ca2+ by the Ca2+-ATPase of skeletal-muscle sarcoplasmic reticulum. Biochem. J. 361, 277–286 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mall, S. et al. The presence of sarcolipin results in increased heat production by Ca2+-ATPase. J. Biol. Chem. 281, 36597–36602 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Tupling, A.R. et al. Enhanced Ca2+ transport and muscle relaxation in skeletal muscle from sarcolipin-null mice. Am. J. Physiol. Cell Physiol. 301, C841–C849 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hofmann, W.E., Liu, X., Bearden, C.M., Harper, M.E. & Kozak, L.P. Effects of genetic background on thermoregulation and fatty acid–induced uncoupling of mitochondria in UCP1-deficient mice. J. Biol. Chem. 276, 12460–12465 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Vitali, A. et al. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J. Lipid Res. 53, 619–629 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lim, S. et al. Cold-induced activation of brown adipose tissue and adipose angiogenesis in mice. Nat. Protoc. 7, 606–615 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Kashimura, O., Sakai, A., Yanagidaira, Y. & Ueda, G. Thermogenesis induced by inhibition of shivering during cold exposure in exercise-trained rats. Aviat. Space Environ. Med. 63, 1082–1086 (1992).

    CAS  PubMed  Google Scholar 

  25. Bowman, W.C. Neuromuscular block. Br. J. Pharmacol. 147 (suppl. 1), S277–S286 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, R. et al. Localization of the dantrolene-binding sequence near the FK506-binding protein-binding site in the three-dimensional structure of the ryanodine receptor. J. Biol. Chem. 286, 12202–12212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kjelstrup, S., de Meis, L., Bedeaux, D. & Simon, J.M. Is the Ca2+-ATPase from sarcoplasmic reticulum also a heat pump? Eur. Biophys. J. 38, 59–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. de Meis, L., Arruda, A.P. & Carvalho, D.P. Role of sarco/endoplasmic reticulum Ca2+-ATPase in thermogenesis. Biosci. Rep. 25, 181–190 (2005).

    Article  PubMed  Google Scholar 

  29. Jones, L.R., Cornea, R.L. & Chen, Z. Close proximity between residue 30 of phospholamban and cysteine 318 of the cardiac Ca2+ pump revealed by intermolecular thiol cross-linking. J. Biol. Chem. 277, 28319–28329 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Rippe, C., Berger, K., Boiers, C., Ricquier, D. & Erlanson-Albertsson, C. Effect of high-fat diet, surrounding temperature, and enterostatin on uncoupling protein gene expression. Am. J. Physiol. Endocrinol. Metab. 279, E293–E300 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Arruda, A.P. et al. Cold tolerance in hypothyroid rabbits: role of skeletal muscle mitochondria and sarcoplasmic reticulum Ca2+ ATPase isoform 1 heat production. Endocrinology 149, 6262–6271 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Bicudo, J.E., Vianna, C.R. & Chaui-Berlinck, J.G. Thermogenesis in birds. Biosci. Rep. 21, 181–188 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Berg, F., Gustafson, U. & Andersson, L. The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: a genetic explanation for poor thermoregulation in piglets. PLoS Genet. 2, e129 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Babu, G.J., Bhupathy, P., Carnes, C.A., Billman, G.E. & Periasamy, M. Differential expression of sarcolipin protein during muscle development and cardiac pathophysiology. J. Mol. Cell. Cardiol. 43, 215–222 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cypess, A.M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Babu, G.J. et al. Ablation of sarcolipin enhances sarcoplasmic reticulum calcium transport and atrial contractility. Proc. Natl. Acad. Sci. USA 104, 17867–17872 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Brennan, K.J. & Hardeman, E.C. Quantitative analysis of the human α-skeletal actin gene in transgenic mice. J. Biol. Chem. 268, 719–725 (1993).

    CAS  PubMed  Google Scholar 

  38. Kashimura, O., Sakai, A., Yanagidaira, Y. & Ueda, G. Thermogenesis induced by inhibition of shivering during cold exposure in exercise-trained rats. Aviat. Space Environ. Med. 63, 1082–1086 (1992).

    CAS  PubMed  Google Scholar 

  39. Dainese, M. et al. Anesthetic- and heat-induced sudden death in calsequestrin-1–knockout mice. FASEB J. 23, 1710–1720 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jones, L.R., Cornea, R.L. & Chen, Z. Close proximity between residue 30 of phospholamban and cysteine 318 of the cardiac Ca2+ pump revealed by intermolecular thiol cross-linking. J. Biol. Chem. 277, 28319–28329 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Maruyama, K. & MacLennan, D.H. Mutation of aspartic acid-351, lysine-352, and lysine-515 alters the Ca2+ transport activity of the Ca2+-ATPase expressed in COS-1 cells. Proc. Natl. Acad. Sci. USA 85, 3314–3318 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US National Institutes of Health grant R01 (HL080551) to M. Periasamy. N.C.B. was supported by a postdoctoral fellowship from the American Physiological Society and the American Heart Association (10POST3360007). This work was also supported in part by research grants from the Canadian Institutes of Health Research to A.R.T. (MOP 86618 and MOP 47296). We thank P. Mohler, J.A. Rafael-Fortney and J.E. Ostler, for comments on the manuscript. We thank N. Manivannan and K. Powell (Ohio State University Medical Center, Davis Heart and Lung Research Institute, Small Animal Imaging Facility, Columbus, Ohio, USA) for MRI of mice.

Author information

Authors and Affiliations

Authors

Contributions

M. Periasamy and N.C.B. conceived of the study idea and designed the experiments. D.H.S., S.A.S., M. Pant and L.A.R. designed and conducted mouse breeding. S.K.M., N.C.B., D.H.S. and M. Pant performed the thermogenesis experiments. N.C.B., S.C.G. and S.K.M. conducted HFD feeding experiments. S.K.S. designed and conducted chemical crosslinking studies. E.B. designed and conducted HFD experiments on Sln–/– mice. A.R.T. conceived the idea of and designed the HFD studies. S.A.G. and J.D.M. generated and characterized the Sln overexpression mouse model. M. Periasamy, S.K.M., S.K.S., N.C.B. and D.H.S. analyzed the data and assembled the figures. M. Periasamy, N.C.B. and D.H.S. wrote the manuscript.

Corresponding author

Correspondence to Muthu Periasamy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 575 kb)

Supplementary Video 1

Shivering is not impaired in Sln−/− mice. (MP4 12606 kb)

Supplementary Video 2

Curare treatment minimizes shivering. (MP4 13584 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bal, N., Maurya, S., Sopariwala, D. et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med 18, 1575–1579 (2012). https://doi.org/10.1038/nm.2897

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2897

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing