Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Malaria impairs resistance to Salmonella through heme- and heme oxygenase–dependent dysfunctional granulocyte mobilization

This article has been updated

Abstract

In sub-Saharan Africa, invasive nontyphoid Salmonella (NTS) infection is a common and often fatal complication of Plasmodium falciparum infection. Induction of heme oxygenase-1 (HO-1) mediates tolerance to the cytotoxic effects of heme during malarial hemolysis but might impair resistance to NTS by limiting production of bactericidal reactive oxygen species. We show that co-infection of mice with Plasmodium yoelii 17XNL (Py17XNL) and Salmonella enterica serovar Typhimurium 12023 (Salmonella typhimurium) causes acute, fatal bacteremia with high bacterial load, features reproduced by phenylhydrazine-induced hemolysis or hemin administration. S. typhimurium localized predominantly in granulocytes. Py17XNL, phenylhydrazine and hemin caused premature mobilization of granulocytes from bone marrow with a quantitative defect in the oxidative burst. Inhibition of HO by tin protoporphyrin abrogated the impairment of resistance to S. typhimurium by hemolysis. Thus, a mechanism of tolerance to one infection, malaria, impairs resistance to another, NTS. Furthermore, HO inhibitors may be useful adjunctive therapy for NTS infection in the context of hemolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hemolysis and heme are associated with impaired resistance to S. typhimurium.
Figure 2: S. typhimurium localize in granulocytes after hemolysis and hemin treatment.
Figure 3: Hemolysis and heme cause dysfunctional granulocyte mobilization.
Figure 4: HO-1 induction in bone marrow.
Figure 5: Impaired resistance to S. typhimurium is abrogated by inhibition of heme oxygenase.
Figure 6: Proposed mechanism to explain how hemolysis impairs resistance to S. typhimurium through heme- and heme oxygenase-dependent dysfunctional granulocyte mobilization.

Similar content being viewed by others

Change history

  • 31 January 2012

     In the version of this article initially published, the received date was incorrect. The correct date is 25 July 2011. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Morpeth, S.C., Ramadhani, H.O. & Crump, J.A. Invasive non-Typhi Salmonella disease in Africa. Clin. Infect. Dis. 49, 606–611 (2009).

    Article  Google Scholar 

  2. Berkley, J.A. et al. HIV infection, malnutrition and invasive bacterial infection among children with severe malaria. Clin. Infect. Dis. 49, 336–343 (2009).

    Article  Google Scholar 

  3. Mabey, D.C., Brown, A. & Greenwood, B.M. Plasmodium falciparum malaria and Salmonella infections in Gambian children. J. Infect. Dis. 155, 1319–1321 (1987).

    Article  CAS  Google Scholar 

  4. Bronzan, R.N. et al. Bacteremia in Malawian children with severe malaria: prevalence, etiology, HIV coinfection and outcome. J. Infect. Dis. 195, 895–904 (2007).

    Article  Google Scholar 

  5. Wright, J., Thomas, P. & Serjeant, G.R. Septicemia caused by Salmonella infection: an overlooked complication of sickle cell disease. J. Pediatr. 130, 394–399 (1997).

    Article  CAS  Google Scholar 

  6. Kaye, D., Merselis, J.G. Jr. & Hook, E.W. Influence of Plasmodium berghei infection on susceptibility to Salmonella infection. Proc. Soc. Exp. Biol. Med. 120, 810–813 (1965).

    Article  CAS  Google Scholar 

  7. Murphy, J.R. Host defenses in murine malaria: analysis of plasmodial infection–caused defects in macrophage microbicidal capacities. Infect. Immun. 31, 396–407 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Roux, C.M. et al. Both hemolytic anemia and malaria parasite-specific factors increase susceptibility to nontyphoidal Salmonella enterica serovar Typhimurium infection in mice. Infect. Immun. 78, 1520–1527 (2010).

    Article  CAS  Google Scholar 

  9. Kaye, D. & Hook, E.W. The influence of hemolysis or blood loss on susceptibility to infection. J. Immunol. 91, 65–75 (1963).

    CAS  PubMed  Google Scholar 

  10. Kaye, D. & Hook, E.W. The influence of hemolysis on susceptibility to Salmonella infection: additional observations. J. Immunol. 91, 518–527 (1963).

    CAS  PubMed  Google Scholar 

  11. Roy, M.F. et al. Pyruvate kinase deficiency confers susceptibility to Salmonella typhimurium infection in mice. J. Exp. Med. 204, 2949–2961 (2007).

    Article  CAS  Google Scholar 

  12. Ryter, S.W., Alam, J. & Choi, A.M. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev. 86, 583–650 (2006).

    Article  CAS  Google Scholar 

  13. Tenhunen, R., Marver, H.S. & Schmid, R. Microsomal heme oxygenase. Characterization of the enzyme. J. Biol. Chem. 244, 6388–6394 (1969).

    CAS  PubMed  Google Scholar 

  14. Wagener, F.A. et al. Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood 98, 1802–1811 (2001).

    Article  CAS  Google Scholar 

  15. Graça-Souza, A.V., Arruda, M.A., de Freitas, M.S., Barja-Fidalgo, C. & Oliveira, P.L. Neutrophil activation by heme: implications for inflammatory processes. Blood 99, 4160–4165 (2002).

    Article  Google Scholar 

  16. Porto, B.N. et al. Heme induces neutrophil migration and reactive oxygen species generation through signaling pathways characteristic of chemotactic receptors. J. Biol. Chem. 282, 24430–24436 (2007).

    Article  CAS  Google Scholar 

  17. Gozzelino, R., Jeney, V. & Soares, M.P. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 50, 323–354 (2010).

    Article  CAS  Google Scholar 

  18. Poss, K.D. & Tonegawa, S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc. Natl. Acad. Sci. USA 94, 10919–10924 (1997).

    Article  CAS  Google Scholar 

  19. Poss, K.D. & Tonegawa, S. Reduced stress defense in heme oxygenase 1–deficient cells. Proc. Natl. Acad. Sci. USA 94, 10925–10930 (1997).

    Article  CAS  Google Scholar 

  20. Yachie, A. et al. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J. Clin. Invest. 103, 129–135 (1999).

    Article  CAS  Google Scholar 

  21. Soares, M.P. & Bach, F.H. Heme oxygenase-1: from biology to therapeutic potential. Trends Mol. Med. 15, 50–58 (2009).

    Article  CAS  Google Scholar 

  22. Pamplona, A., Hanscheid, T., Epiphanio, S., Mota, M.M. & Vigario, A.M. Cerebral malaria and the hemolysis/methemoglobin/heme hypothesis: shedding new light on an old disease. Int. J. Biochem. Cell Biol. 41, 711–716 (2009).

    Article  CAS  Google Scholar 

  23. Belcher, J.D. et al. Heme oxygenase-1 is a modulator of inflammation and vaso-occlusion in transgenic sickle mice. J. Clin. Invest. 116, 808–816 (2006).

    Article  CAS  Google Scholar 

  24. Pamplona, A. et al. Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat. Med. 13, 703–710 (2007).

    Article  CAS  Google Scholar 

  25. Seixas, E. et al. Heme oxygenase-1 affords protection against noncerebral forms of severe malaria. Proc. Natl. Acad. Sci. USA 106, 15837–15842 (2009).

    Article  CAS  Google Scholar 

  26. Ferreira, A. et al. Sickle hemoglobin confers tolerance to Plasmodium infection. Cell 145, 398–409 (2011).

    Article  CAS  Google Scholar 

  27. Larsen, R. et al. A central role for free heme in the pathogenesis of severe sepsis. Sci. Transl. Med. 2, 51ra71 (2010).

    Article  Google Scholar 

  28. Mastroeni, P. et al. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J. Exp. Med. 192, 237–248 (2000).

    Article  CAS  Google Scholar 

  29. Hestdal, K. et al. Characterization and regulation of RB6–8C5 antigen expression on murine bone marrow cells. J. Immunol. 147, 22–28 (1991).

    CAS  Google Scholar 

  30. Chauveau, C. et al. Heme oxygenase-1 expression inhibits dendritic cell maturation and proinflammatory function but conserves IL-10 expression. Blood 106, 1694–1702 (2005).

    Article  CAS  Google Scholar 

  31. Pham, N.K., Mouriz, J. & Kima, P.E. Leishmania pifanoi amastigotes avoid macrophage production of superoxide by inducing heme degradation. Infect. Immun. 73, 8322–8333 (2005).

    Article  CAS  Google Scholar 

  32. Datla, S.R. et al. Induction of heme oxygenase-1 in vivo suppresses NADPH oxidase derived oxidative stress. Hypertension 50, 636–642 (2007).

    Article  CAS  Google Scholar 

  33. Li, X., Schwacha, M.G., Chaudry, I.H. & Choudhry, M.A. Heme oxygenase-1 protects against neutrophil-mediated intestinal damage by down-regulation of neutrophil p47phox and p67phox activity and O2 production in a two-hit model of alcohol intoxication and burn injury. J. Immunol. 180, 6933–6940 (2008).

    Article  CAS  Google Scholar 

  34. Richardson, M.P., Ayliffe, M.J., Helbert, M. & Davies, E.G. A simple flow cytometry assay using dihydrorhodamine for the measurement of the neutrophil respiratory burst in whole blood: comparison with the quantitative nitrobluetetrazolium test. J. Immunol. Methods 219, 187–193 (1998).

    Article  CAS  Google Scholar 

  35. de Haas, M. et al. Granulocyte colony-stimulating factor administration to healthy volunteers: analysis of the immediate activating effects on circulating neutrophils. Blood 84, 3885–3894 (1994).

    CAS  PubMed  Google Scholar 

  36. Glasser, L. & Fiederlein, R.L. Functional differentiation of normal human neutrophils. Blood 69, 937–944 (1987).

    CAS  PubMed  Google Scholar 

  37. Sponaas, A.M. et al. Migrating monocytes recruited to the spleen play an important role in control of blood stage malaria. Blood 114, 5522–5531 (2009).

    Article  CAS  Google Scholar 

  38. Sheppard, F.R. et al. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J. Leukoc. Biol. 78, 1025–1042 (2005).

    Article  CAS  Google Scholar 

  39. Bilban, M. et al. Heme oxygenase and carbon monoxide initiate homeostatic signaling. J. Mol. Med. 86, 267–279 (2008).

    Article  CAS  Google Scholar 

  40. Maines, M.D. & Veltman, J.C. Phenylhydrazine-mediated induction of haem oxygenase activity in rat liver and kidney and development of hyperbilirubinaemia. Inhibition by zinc-protoporphyrin. Biochem. J. 217, 409–417 (1984).

    Article  CAS  Google Scholar 

  41. Belyaev, N.N. et al. Induction of an IL7-R+c-Kithi myelolymphoid progenitor critically dependent on IFN-γ signaling during acute malaria. Nat. Immunol. 11, 477–485 (2010).

    Article  CAS  Google Scholar 

  42. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  Google Scholar 

  43. Shan, Y., Lambrecht, R.W., Donohue, S.E. & Bonkovsky, H.L. Role of Bach1 and Nrf2 in up-regulation of the heme oxygenase-1 gene by cobalt protoporphyrin. FASEB J. 20, 2651–2653 (2006).

    Article  CAS  Google Scholar 

  44. DeLeo, F.R. et al. Processing and maturation of flavocytochrome b558 include incorporation of heme as a prerequisite for heterodimer assembly. J. Biol. Chem. 275, 13986–13993 (2000).

    Article  CAS  Google Scholar 

  45. Nairz, M. et al. The co-ordinated regulation of iron homeostasis in murine macrophages limits the availability of iron for intracellular Salmonella typhimurium. Cell. Microbiol. 9, 2126–2140 (2007).

    Article  CAS  Google Scholar 

  46. Zaki, M.H. et al. Cytoprotective function of heme oxygenase 1 induced by a nitrated cyclic nucleotide formed during murine salmonellosis. J. Immunol. 182, 3746–3756 (2009).

    Article  CAS  Google Scholar 

  47. Mastroeni, P., Grant, A., Restif, O. & Maskell, D. A dynamic view of the spread and intracellular distribution of Salmonella enterica. Nat. Rev. Microbiol. 7, 73–80 (2009).

    Article  CAS  Google Scholar 

  48. Read, A.F., Graham, A.L. & Raberg, L. Animal defenses against infectious agents: is damage control more important than pathogen control. PLoS Biol. 6, e4 (2008).

    Article  Google Scholar 

  49. Schneider, D.S. & Ayres, J.S. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat. Rev. Immunol. 8, 889–895 (2008).

    Article  CAS  Google Scholar 

  50. Epiphanio, S. et al. Heme oxygenase-1 is an anti-inflammatory host factor that promotes murine plasmodium liver infection. Cell Host Microbe 3, 331–338 (2008).

    Article  CAS  Google Scholar 

  51. Ayres, J.S. & Schneider, D.S. The role of anorexia in resistance and tolerance to infections in Drosophila. PLoS Biol. 7, e1000150 (2009).

    Article  Google Scholar 

  52. Sun, K. & Metzger, D.W. Inhibition of pulmonary antibacterial defense by interferon-gamma during recovery from influenza infection. Nat. Med. 14, 558–564 (2008).

    Article  CAS  Google Scholar 

  53. Ryter, S.W. & Choi, A.M. Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. Am. J. Respir. Cell Mol. Biol. 41, 251–260 (2009).

    Article  CAS  Google Scholar 

  54. Otterbein, L.E. The evolution of carbon monoxide into medicine. Respir. Care 54, 925–932 (2009).

    Article  Google Scholar 

  55. Kappas, A., Drummond, G.S., Manola, T., Petmezaki, S. & Valaes, T. Sn-protoporphyrin use in the management of hyperbilirubinemia in term newborns with direct Coombs-positive ABO incompatibility. Pediatrics 81, 485–497 (1988).

    CAS  PubMed  Google Scholar 

  56. Ewing, P. et al. Cobalt protoporphyrine IX–mediated heme oxygenase-I induction alters the inflammatory cytokine response, but not antigen presentation after experimental allogeneic bone marrow transplantation. Int. J. Mol. Med. 20, 301–308 (2007).

    CAS  PubMed  Google Scholar 

  57. Shinowara, G.Y. & Walters, M.I. Hematin–studies on protein complexes and determination in human plasma. Am. J. Clin. Pathol. 40, 113–122 (1963).

    Article  CAS  Google Scholar 

  58. Kahn, S.E., Watkins, B.F. & Bermes, E.W. Jr. An evaluation of a spectrophotometric scanning technique for measurement of plasma hemoglobin. Ann. Clin. Lab. Sci. 11, 126–131 (1981).

    CAS  PubMed  Google Scholar 

  59. Foresti, R., Clark, J.E., Green, C.J. & Motterlini, R. Thiol compounds interact with nitric oxide in regulating heme oxygenase-1 induction in endothelial cells. Involvement of superoxide and peroxynitrite anions. J. Biol. Chem. 272, 18411–18417 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a UK Medical Research Council Clinical Research Training Fellowship (G0701427) and a small grant award from the European Society for Pediatric Infectious Diseases awarded to A.J.C. We wish to thank D. Holden (Imperial College, London) for providing GFP-expressing S. typhimurium and R. Motterlini, S. Baines, H. Kaur, L. King, C. Stanley, R. Gregory, L. McCarthy, K. Couper, J. Hafalla, E. Findlay and D. Blount for technical advice and assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.J.C. and J.B.d.S. conducted the experiments. A.J.C. and E.M.R. wrote the manuscript. All authors contributed to the conception and planning of the experiments, and to critical revision of the manuscript. M.W. and E.M.R. supervised the project.

Corresponding author

Correspondence to Eleanor M Riley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 1429 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunnington, A., de Souza, J., Walther, M. et al. Malaria impairs resistance to Salmonella through heme- and heme oxygenase–dependent dysfunctional granulocyte mobilization. Nat Med 18, 120–127 (2012). https://doi.org/10.1038/nm.2601

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2601

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing