Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thyroid hormone receptor repression is linked to type I pneumocyte–associated respiratory distress syndrome

Abstract

Although the lung is a defining feature of air-breathing animals, the pathway controlling the formation of type I pneumocytes, the cells that mediate gas exchange, is poorly understood. In contrast, the glucocorticoid receptor and its cognate ligand have long been known to promote type II pneumocyte maturation; prenatal administration of glucocorticoids is commonly used to attenuate the severity of infant respiratory distress syndrome (RDS). Here we show that knock-in mutations of the nuclear co-repressor SMRT (silencing mediator of retinoid and thyroid hormone receptors) in C57BL/6 mice (SMRTmRID) produces a previously unidentified respiratory distress syndrome caused by prematurity of the type I pneumocyte. Though unresponsive to glucocorticoids, treatment with anti–thyroid hormone drugs (propylthiouracil or methimazole) completely rescues SMRT-induced RDS, suggesting an unrecognized and essential role for the thyroid hormone receptor (TR) in lung development. We show that TR and SMRT control type I pneumocyte differentiation through Klf2, which, in turn, seems to directly activate the type I pneumocyte gene program. Conversely, mice without lung Klf2 lack mature type I pneumocytes and die shortly after birth, closely recapitulating the SMRTmRID phenotype. These results identify TR as a second nuclear receptor involved in lung development, specifically type I pneumocyte differentiation, and suggest a possible new type of therapeutic option in the treatment of RDS that is unresponsive to glucocorticoids.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SMRTmRID mice die postnatally from acute respiratory failure.
Figure 2: Lungs of SMRTmRID mice lack mature type I pneumocytes.
Figure 3: Antithyroid drugs rescue SMRTmRID mice and restore type I pneumocyte development.
Figure 4: Klf2 is reduced in SMRTmRID lungs and activates the type I pneumocyte gene program.
Figure 5: Klf2 is essential for type I pneumocyte and normal lung development in vivo.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Metzger, R.J., Klein, O.D., Martin, G.R. & Krasnow, M.A. The branching programme of mouse lung development. Nature 453, 745–750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stripp, B.R. Hierarchical organization of lung progenitor cells: is there an adult lung tissue stem cell? Proc. Am. Thorac. Soc. 5, 695–698 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Williams, M.C. Alveolar type I cells: molecular phenotype and development. Annu. Rev. Physiol. 65, 669–695 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Dobbs, L.G., Johnson, M.D., Vanderbilt, J., Allen, L. & Gonzalez, R. The great big alveolar TI cell: evolving concepts and paradigms. Cell. Physiol. Biochem. 25, 55–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Herzog, E.L., Brody, A.R., Colby, T.V., Mason, R. & Williams, M.C. Knowns and unknowns of the alveolus. Proc. Am. Thorac. Soc. 5, 778–782 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Evans, R. A transcriptional basis for physiology. Nat. Med. 10, 1022–1026 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, J.D. & Evans, R.M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Bookout, A.L. et al. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126, 789–799 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Privalsky, M.L. The role of corepressors in transcriptional regulation by nuclear hormone receptors. Annu. Rev. Physiol. 66, 315–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Hu, X. & Lazar, M.A. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402, 93–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Jepsen, K. & Rosenfeld, M.G. Biological roles and mechanistic actions of co-repressor complexes. J. Cell Sci. 115, 689–698 (2002).

    CAS  PubMed  Google Scholar 

  12. Perissi, V., Jepsen, K., Glass, C.K. & Rosenfeld, M.G. Deconstructing repression: evolving models of co-repressor action. Nat. Rev. Genet. 11, 109–123 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Jones, P.L. & Shi, Y.B. N-CoR-HDAC corepressor complexes: roles in transcriptional regulation by nuclear hormone receptors. Curr. Top. Microbiol. Immunol. 274, 237–268 (2003).

    CAS  PubMed  Google Scholar 

  14. Nofsinger, R.R. et al. SMRT repression of nuclear receptors controls the adipogenic set point and metabolic homeostasis. Proc. Natl. Acad. Sci. USA 105, 20021–20026 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Morrisey, E.E. & Hogan, B.L. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev. Cell 18, 8–23 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mendelson, C.R. Role of transcription factors in fetal lung development and surfactant protein gene expression. Annu. Rev. Physiol. 62, 875–915 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, Y. et al. GATA and Nkx factors synergistically regulate tissue-specific gene expression and development in vivo. Development 134, 189–198 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Burrow, G.N., Fisher, D.A. & Larsen, P.R. Maternal and fetal thyroid function. N. Engl. J. Med. 331, 1072–1078 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Fraichard, A. et al. The T3Rα gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production. EMBO J. 16, 4412–4420 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wikström, L. et al. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor α 1. EMBO J. 17, 455–461 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Saltó, C. et al. Ablation of TRα2 and a concomitant overexpression of α1 yields a mixed hypo- and hyperthyroid phenotype in mice. Mol. Endocrinol. 15, 2115–2128 (2001).

    PubMed  Google Scholar 

  22. Gauthier, K. et al. Genetic analysis reveals different functions for the products of the thyroid hormone receptor α locus. Mol. Cell. Biol. 21, 4748–4760 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Forrest, D. et al. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor β: evidence for tissue-specific modulation of receptor function. EMBO J. 15, 3006–3015 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hetzel, B.S. & Mano, M.T. A review of experimental studies of iodine deficiency during fetal development. J. Nutr. 119, 145–151 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Barish, G.D. et al. Bcl-6 and NF-κB cistromes mediate opposing regulation of the innate immune response. Genes Dev. 24, 2760–2765 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wani, M.A., Wert, S.E. & Lingrel, J.B. Lung Kruppel-like factor, a zinc finger transcription factor, is essential for normal lung development. J. Biol. Chem. 274, 21180–21185 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Wani, M.A., Means, R.T. Jr. & Lingrel, J.B. Loss of LKLF function results in embryonic lethality in mice. Transgenic Res. 7, 229–238 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Kuo, C.T. et al. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev. 11, 2996–3006 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Warburton, D. et al. The molecular basis of lung morphogenesis. Mech. Dev. 92, 55–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Whitsett, J.A., Wert, S.E. & Trapnell, B.C. Genetic disorders influencing lung formation and function at birth. Hum. Mol. Genet. 13 (Spec No 2), R207–R215 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Domyan, E.T. & Sun, X. Patterning and plasticity in development of the respiratory lineage. Dev. Dyn. 240, 477–485 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Sheppard, D. Functions of pulmonary epithelial integrins: from development to disease. Physiol. Rev. 83, 673–686 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Minoo, P., Su, G., Drum, H., Bringas, P. & Kimura, S. Defects in tracheoesophageal and lung morphogenesis in Nkx2.1−/− mouse embryos. Dev. Biol. 209, 60–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, G. et al. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J. Clin. Invest. 119, 2914–2924 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsao, P.N. et al. Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development 136, 2297–2307 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Borges, M. et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 386, 852–855 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Morimoto, M. et al. Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. J. Cell Sci. 123, 213–224 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mendelsohn, C. et al. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120, 2749–2771 (1994).

    CAS  PubMed  Google Scholar 

  39. Gross, I. Regulation of fetal lung maturation. Am. J. Physiol. 259, L337–L344 (1990).

    CAS  PubMed  Google Scholar 

  40. Merrill, J.D. & Ballard, R.A. Antenatal hormone therapy for fetal lung maturation. Clin. Perinatol. 25, 983–997 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. NIH Consensus Development Panel on the Effect of Corticosteroids for Fetal Maturation on Perinatal Outcomes. Effect of corticosteroids for fetal maturation on perinatal outcomes. J. Am. Med. Assoc. 273, 413–418 (1995).

  42. Bizzarro, M.J. & Gross, I. Effects of hormones on fetal lung development. Obstet. Gynecol. Clin. North Am. 31, 949–961 (2004).

    Article  PubMed  Google Scholar 

  43. Purdy, I.B. & Wiley, D.J. Perinatal corticosteroids: a review of research. Part I: antenatal administration. Neonatal Netw. 23, 15–30 (2004).

    Article  PubMed  Google Scholar 

  44. Ho, N.K. Factors affecting responses of infants with respiratory distress syndrome to exogenous surfactant therapy. Singapore Med. J. 34, 74–77 (1993).

    CAS  PubMed  Google Scholar 

  45. Lim, B.K. et al. Coxsackievirus and adenovirus receptor (CAR) mediates atrioventricular-node function and connexin 45 localization in the murine heart. J. Clin. Invest. 118, 2758–2770 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Y., Conrad, A.H. & Conrad, G.W. Detection and quantification of 3,5,3′-triiodothyronine and 3,3′,5′-triiodothyronine by electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 1781–1786 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Yue, B. et al. Free thyroid hormones in serum by direct equilibrium dialysis and online solid-phase extraction–liquid chromatography/tandem mass spectrometry. Clin. Chem. 54, 642–651 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Hsiao, A., Ideker, T., Olefsky, J.M. & Subramaniam, S. VAMPIRE microarray suite: a web-based platform for the interpretation of gene expression data. Nucleic Acids Res. 33, W627–W632 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pei, L. et al. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat. Med. 12, 1048–1055 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Nelson, J.D., Denisenko, O. & Bomsztyk, K. Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat. Protoc. 1, 179–185 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Juguilon, M. Karunasiri, S. Kaufman and Y. Dayn for technical support, J. Stubbs, C. Kintner, L. Nagy, S.-H. Hong, J. Jonker and J. Fitzpatrick for helpful discussions, M. Montminy of Salk Institute for GFP adenovirus, J. Simon, L. Grabowski and J. Belcovson for artistic work, and E. Ong and S. Ganley for administrative assistance. We appreciate the help and expertise from M. Wood for the electron microscopy study. We thank J. Codey and the Leona M. and Harry B. Helmsley Charitable Trust for their generous support. L.P. is a Parker B. Francis Fellow supported by the Francis Family Foundation. R.M.E. is an investigator of the Howard Hughes Medical Institute at the Salk Institute for Biological Studies and March of Dimes Chair in Molecular and Developmental Biology. This work was supported by the Howard Hughes Medical Institute and US National Institutes of Health grants 2RO1DK057978, 2RO1HL105278, 5U19DK062434 (R.M.E.) and RO1HL57281 (J.B.L.).

Author information

Authors and Affiliations

Authors

Contributions

L.P. led the project and designed and performed most of the experiments. M.L. is a pathologist who evaluated all the anatomy, histology and staining results. A.A. analyzed the blood T4 and rT3 levels in newborn pups using mass spectrometry. R.N. generated the SMRT knock-in mice. R.T.Y. analyzed the microarray data. H.-R.L. provided expertise in electron microscopy studies. G.B., J.W., D.G., M.H., K.K., M.D., H.C.P. and J.B.L. provided intellectual input and technical expertise. J.B.L. provided the Klf2−/− ES cells. R.M.E. supervised the project. L.P. and R.M.E. wrote the manuscript.

Corresponding author

Correspondence to Ronald M Evans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1–4. (PDF 1106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, L., Leblanc, M., Barish, G. et al. Thyroid hormone receptor repression is linked to type I pneumocyte–associated respiratory distress syndrome. Nat Med 17, 1466–1472 (2011). https://doi.org/10.1038/nm.2450

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2450

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research