Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A human memory T cell subset with stem cell–like properties

Abstract

Immunological memory is thought to depend on a stem cell–like, self-renewing population of lymphocytes capable of differentiating into effector cells in response to antigen re-exposure. Here we describe a long-lived human memory T cell population that has an enhanced capacity for self-renewal and a multipotent ability to derive central memory, effector memory and effector T cells. These cells, specific to multiple viral and self-tumor antigens, were found within a CD45RO, CCR7+, CD45RA+, CD62L+, CD27+, CD28+ and IL-7Rα+ T cell compartment characteristic of naive T cells. However, they expressed large amounts of CD95, IL-2Rβ, CXCR3, and LFA-1, and showed numerous functional attributes distinctive of memory cells. Compared with known memory populations, these lymphocytes had increased proliferative capacity and more efficiently reconstituted immunodeficient hosts, and they mediated superior antitumor responses in a humanized mouse model. The identification of a human stem cell–like memory T cell population is of direct relevance to the design of vaccines and T cell therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of TSCM cells in human blood.
Figure 2: TSCM cells possess attributes of conventional memory T cells.
Figure 3: TSCM cells represent a distinct, less-differentiated T cell memory subset.
Figure 4: Enhanced self-renewal and multipotency of TSCM cells.
Figure 5: Increased proliferative capacity, survival and antitumor activity of TSCM cells.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Wakim, L.M. & Bevan, M.J. From the thymus to longevity in the periphery. Curr. Opin. Immunol. 22, 274–278 (2010).

    Article  CAS  Google Scholar 

  2. Kim, P.S. & Ahmed, R. Features of responding T cells in cancer and chronic infection. Curr. Opin. Immunol. 22, 223–230 (2010).

    Article  CAS  Google Scholar 

  3. Klebanoff, C.A., Gattinoni, L. & Restifo, N.P. CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol. Rev. 211, 214–224 (2006).

    Article  CAS  Google Scholar 

  4. Fearon, D.T., Manders, P. & Wagner, S.D. Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 293, 248–250 (2001).

    Article  CAS  Google Scholar 

  5. Stemberger, C. et al. Stem cell-like plasticity of naive and distinct memory CD8+ T cell subsets. Semin. Immunol. 21, 62–68 (2009).

    Article  CAS  Google Scholar 

  6. Luckey, C.J. et al. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 103, 3304–3309 (2006).

    Article  CAS  Google Scholar 

  7. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  Google Scholar 

  8. Zhang, Y., Joe, G., Hexner, E., Zhu, J. & Emerson, S.G. Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nat. Med. 11, 1299–1305 (2005).

    Article  CAS  Google Scholar 

  9. Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med. 15, 808–813 (2009).

    Article  CAS  Google Scholar 

  10. Neuenhahn, M. & Busch, D.H. The quest for CD8+ memory stem cells. Immunity 31, 702–704 (2009).

    Article  CAS  Google Scholar 

  11. Turtle, C.J., Swanson, H.M., Fujii, N., Estey, E.H. & Riddell, S.R. A distinct subset of self-renewing human memory CD8+ T cells survives cytotoxic chemotherapy. Immunity 31, 834–844 (2009).

    Article  CAS  Google Scholar 

  12. Dusseaux, M. et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117, 1250–1259 (2011).

    Article  CAS  Google Scholar 

  13. Schenkel, J.M., Zloza, A., Li, W., Narasipura, S.D. & Al-Harthi, L. β-catenin signaling mediates CD4 expression on mature CD8+ T cells. J. Immunol. 185, 2013–2019 (2010).

    Article  CAS  Google Scholar 

  14. Gattinoni, L., Ji, Y. & Restifo, N.P. Wnt/β-catenin signaling in T-cell immunity and cancer immunotherapy. Clin. Cancer Res. 16, 4695–4701 (2010).

    Article  CAS  Google Scholar 

  15. Gattinoni, L., Ji, Y. & Restifo, N.P. β-catenin does not regulate memory T cell phenotype. Reply. Nat. Med. 16, 514–515 (2010).

    Article  CAS  Google Scholar 

  16. Appay, V., van Lier, R.A., Sallusto, F. & Roederer, M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 73, 975–983 (2008).

    Article  Google Scholar 

  17. De Rosa, S.C., Herzenberg, L.A., Herzenberg, L.A. & Roederer, M. 11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat. Med. 7, 245–248 (2001).

    Article  CAS  Google Scholar 

  18. Douek, D.C. et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 396, 690–695 (1998).

    Article  CAS  Google Scholar 

  19. Kambayashi, T., Assarsson, E., Lukacher, A.E., Ljunggren, H.G. & Jensen, P.E. Memory CD8+ T cells provide an early source of IFN-γ. J. Immunol. 170, 2399–2408 (2003).

    Article  CAS  Google Scholar 

  20. Surh, C.D. & Sprent, J. Homeostatic T cell proliferation: how far can T cells be activated to self-ligands? J. Exp. Med. 192, F9–F14 (2000).

    Article  CAS  Google Scholar 

  21. Prlic, M., Lefrancois, L. & Jameson, S.C. Multiple choices: regulation of memory CD8 T cell generation and homeostasis by interleukin (IL)-7 and IL-15. J. Exp. Med. 195, F49–F52 (2002).

    Article  CAS  Google Scholar 

  22. Lugli, E. et al. Transient and persistent effects of IL-15 on lymphocyte homeostasis in nonhuman primates. Blood 116, 3238–3248 (2010).

    Article  CAS  Google Scholar 

  23. Alanio, C., Lemaitre, F., Law, H.K., Hasan, M. & Albert, M.L. Enumeration of human antigen-specific naive CD8+ T cells reveals conserved precursor frequencies. Blood 115, 3718–3725 (2010).

    Article  CAS  Google Scholar 

  24. Zippelius, A. et al. Thymic selection generates a large T cell pool recognizing a self-peptide in humans. J. Exp. Med. 195, 485–494 (2002).

    Article  CAS  Google Scholar 

  25. Willinger, T., Freeman, T., Hasegawa, H., McMichael, A.J. & Callan, M.F. Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J. Immunol. 175, 5895–5903 (2005).

    Article  CAS  Google Scholar 

  26. Pearce, E.L. et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302, 1041–1043 (2003).

    Article  CAS  Google Scholar 

  27. Joshi, N.S. et al. Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    Article  CAS  Google Scholar 

  28. Rutishauser, R.L. et al. Transcriptional repressor Blimp-1 promotes CD8(+) T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31, 296–308 (2009).

    Article  CAS  Google Scholar 

  29. Feng, X. et al. Transcription factor Foxp1 exerts essential cell-intrinsic regulation of the quiescence of naive T cells. Nat. Immunol. 12, 544–550 (2011).

    Article  CAS  Google Scholar 

  30. Ogretmen, B. & Hannun, Y.A. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat. Rev. Cancer 4, 604–616 (2004).

    Article  CAS  Google Scholar 

  31. Khan, J. et al. Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res. 58, 5009–5013 (1998).

    CAS  PubMed  Google Scholar 

  32. Oberdoerffer, S. et al. Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL. Science 321, 686–691 (2008).

    Article  CAS  Google Scholar 

  33. Hinrichs, C.S. et al. Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood 117, 808–814 (2011).

    Article  CAS  Google Scholar 

  34. Carpenito, C. et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl. Acad. Sci. USA 106, 3360–3365 (2009).

    Article  CAS  Google Scholar 

  35. Gattinoni, L., Powell, D.J. Jr., Rosenberg, S.A. & Restifo, N.P. Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol. 6, 383–393 (2006).

    Article  CAS  Google Scholar 

  36. June, C.H. Adoptive T cell therapy for cancer in the clinic. J. Clin. Invest. 117, 1466–1476 (2007).

    Article  CAS  Google Scholar 

  37. Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115, 1616–1626 (2005).

    Article  CAS  Google Scholar 

  38. Klebanoff, C.A. et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc. Natl. Acad. Sci. USA 102, 9571–9576 (2005).

    Article  CAS  Google Scholar 

  39. Hinrichs, C.S. et al. Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc. Natl. Acad. Sci. USA 106, 17469–17474 (2009).

    Article  CAS  Google Scholar 

  40. Morgan, R.A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).

    Article  CAS  Google Scholar 

  41. Pule, M.A. et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14, 1264–1270 (2008).

    Article  CAS  Google Scholar 

  42. Kimmig, S. et al. Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J. Exp. Med. 195, 789–794 (2002).

    Article  CAS  Google Scholar 

  43. Boursalian, T.E., Golob, J., Soper, D.M., Cooper, C.J. & Fink, P.J. Continued maturation of thymic emigrants in the periphery. Nat. Immunol. 5, 418–425 (2004).

    Article  CAS  Google Scholar 

  44. Zhao, C. & Davies, J.D. A peripheral CD4+ T cell precursor for naive, memory, and regulatory T cells. J. Exp. Med. 207, 2883–2894 (2010).

    Article  CAS  Google Scholar 

  45. Song, K. et al. Characterization of subsets of CD4+ memory T cells reveals early branched pathways of T cell differentiation in humans. Proc. Natl. Acad. Sci. USA 102, 7916–7921 (2005).

    Article  CAS  Google Scholar 

  46. Lugli, E. et al. Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data. Cytometry A 71, 334–344 (2007).

    Article  Google Scholar 

  47. Beier, C.P. & Schulz, J.B. CD95/Fas in the brain–not just a killer. Cell Stem Cell 5, 128–130 (2009).

    Article  CAS  Google Scholar 

  48. Jeannet, G. et al. Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proc. Natl. Acad. Sci. USA 107, 9777–9782 (2010).

    Article  CAS  Google Scholar 

  49. Zhou, X. et al. Differentiation and persistence of memory CD8+ T cells depend on T cell factor 1. Immunity 33, 229–240 (2010).

    Article  CAS  Google Scholar 

  50. Wirth, T.C. et al. Repetitive antigen stimulation induces stepwise transcriptome diversification but preserves a core signature of memory CD8+ T cell differentiation. Immunity 33, 128–140 (2010).

    Article  CAS  Google Scholar 

  51. Sallusto, F., Lanzavecchia, A., Araki, K. & Ahmed, R. From vaccines to memory and back. Immunity 33, 451–463 (2010).

    Article  CAS  Google Scholar 

  52. Wherry, E.J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    Article  CAS  Google Scholar 

  53. Appay, V., Douek, D.C. & Price, D.A. CD8+ T cell efficacy in vaccination and disease. Nat. Med. 14, 623–628 (2008).

    Article  CAS  Google Scholar 

  54. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    Article  CAS  Google Scholar 

  55. Pearce, E.L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    Article  CAS  Google Scholar 

  56. Gattinoni, L., Klebanoff, C.A. & Restifo, N.P. Pharmacologic induction of CD8+ T cell memory: better living through chemistry. Sci. Transl. Med. 1, 11ps12 (2009).

    Article  Google Scholar 

  57. Price, D.A. et al. Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses. J. Exp. Med. 202, 1349–1361 (2005).

    Article  CAS  Google Scholar 

  58. Roederer, M., Nozzi, J.L. & Nason, M.C. SPICE: exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A 79, 167–174 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Programs of the US National Institutes of Health, National Cancer Institute, Center for Cancer Research and National Institute of Allergy and Infectious Diseases. We thank S.A. Rosenberg and J.R. Wunderlich for providing samples from HLA-A*0201 patients with melanoma; P. Scheinberg for providing HLA-A*0201 samples; M. Sabatino for coordinating phereses; B.J. Hill for assistance with the TREC assay; S.P. Perfetto, R. Nguyen, D.A. Ambrozak, A. Mixon and S. Farid for help with cell sorting; P.K. Chattopadhyay and J. Yu for antibody conjugation; and R.A. Seder and C.A. Klebanoff for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.G., E.L., Y.J., Z.P., C.M.P., J.R.A., Z.Y. and C.C. carried out experiments; L.G., E.L., Y.J., Z.P., C.M.P. and J.R.A. analyzed experiments; L.G., E.L., C.M.P., E.W., D.C.D., D.A.P., C.H.J., F.M.M., M.R. and N.P.R. designed experiments; E.G., M.F.Q. and D.A.P. contributed reagents; E.L. and M.R. edited the manuscript; and L.G. and N.P.R. wrote the manuscript.

Corresponding authors

Correspondence to Luca Gattinoni or Nicholas P Restifo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Tables 1–9 and Supplementary Methods (PDF 5663 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gattinoni, L., Lugli, E., Ji, Y. et al. A human memory T cell subset with stem cell–like properties. Nat Med 17, 1290–1297 (2011). https://doi.org/10.1038/nm.2446

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2446

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer