Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways

Abstract

Trastuzumab is a successful rationally designed ERBB2-targeted therapy. However, about half of individuals with ERBB2-overexpressing breast cancer do not respond to trastuzumab-based therapies, owing to various resistance mechanisms. Clinically applicable regimens for overcoming trastuzumab resistance of different mechanisms are not yet available. We show that the nonreceptor tyrosine kinase c-SRC (SRC) is a key modulator of trastuzumab response and a common node downstream of multiple trastuzumab resistance pathways. We find that SRC is activated in both acquired and de novo trastuzumab-resistant cells and uncover a novel mechanism of SRC regulation involving dephosphorylation by PTEN. Increased SRC activation conferred considerable trastuzumab resistance in breast cancer cells and correlated with trastuzumab resistance in patients. Targeting SRC in combination with trastuzumab sensitized multiple lines of trastuzumab-resistant cells to trastuzumab and eliminated trastuzumab-resistant tumors in vivo, suggesting the potential clinical application of this strategy to overcome trastuzumab resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SRC hyperactivation is a key signaling alteration in acquired trastuzumab-resistant cells.
Figure 2: SRC is activated in PTEN-deficient de novo trastuzumab-resistant cells.
Figure 3: SRC is a key modulator of trastuzumab response.
Figure 4: SRC inhibition induced signaling alterations in multiple trastuzumab-resistant models.
Figure 5: Trastuzumab treatment plus SRC inhibition overcomes multiple resistance mechanisms in vitro.
Figure 6: Trastuzumab plus saracatinib combinatorial treatment overcomes trastuzumab resistance in vivo.

Similar content being viewed by others

References

  1. Slamon, D.J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  Google Scholar 

  2. Romond, E.H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

    Article  CAS  Google Scholar 

  3. Vogel, C.L. et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 20, 719–726 (2002).

    Article  CAS  Google Scholar 

  4. Seidman, A.D. et al. Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: final results of Cancer and Leukemia Group B protocol 9840. J. Clin. Oncol. 26, 1642–1649 (2008).

    Article  CAS  Google Scholar 

  5. Lan, K.H., Lu, C.H. & Yu, D. Mechanisms of trastuzumab resistance and their clinical implications. Ann. NY Acad. Sci. 1059, 70–75 (2005).

    Article  CAS  Google Scholar 

  6. Piccart, M. Circumventing de novo and acquired resistance to trastuzumab: new hope for the care of ErbB2-positive breast cancer. Clin. Breast Cancer 8 (Suppl 3), S100–S113 (2008).

    Article  CAS  Google Scholar 

  7. Nagata, Y. et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6, 117–127 (2004).

    Article  CAS  Google Scholar 

  8. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12, 395–402 (2007).

    Article  CAS  Google Scholar 

  9. Scaltriti, M. et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J. Natl. Cancer Inst. 99, 628–638 (2007).

    Article  CAS  Google Scholar 

  10. Moulder, S.L. et al. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res. 61, 8887–8895 (2001).

    CAS  PubMed  Google Scholar 

  11. Dua, R. et al. EGFR over-expression and activation in high HER2, ER negative breast cancer cell line induces trastuzumab resistance. Breast Cancer Res. Treat. 122, 685–697 (2009).

    Article  Google Scholar 

  12. Ritter, C.A. et al. Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin. Cancer Res. 13, 4909–4919 (2007).

    Article  CAS  Google Scholar 

  13. Lu, Y., Zi, X., Zhao, Y., Mascarenhas, D. & Pollak, M. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J. Natl. Cancer Inst. 93, 1852–1857 (2001).

    Article  CAS  Google Scholar 

  14. Nahta, R., Yuan, L.X., Zhang, B., Kobayashi, R. & Esteva, F.J. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res. 65, 11118–11128 (2005).

    Article  CAS  Google Scholar 

  15. Shattuck, D.L., Miller, J.K., Carraway, K.L. III & Sweeney, C. Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res. 68, 1471–1477 (2008).

    Article  CAS  Google Scholar 

  16. Huang, X. et al. Heterotrimerization of the growth factor receptors erbB2, erbB3, and insulin-like growth factor-I receptor in breast cancer cells resistant to herceptin. Cancer Res. 70, 1204–1214 (2010).

    Article  CAS  Google Scholar 

  17. Narayan, M. et al. Trastuzumab-induced HER reprogramming in “resistant” breast carcinoma cells. Cancer Res. 69, 2191–2194 (2009).

    Article  CAS  Google Scholar 

  18. Zhang, S. & Yu, D. PI(3)king apart PTEN′s role in cancer. Clin. Cancer Res. 16, 4325–4330 (2010).

    Article  CAS  Google Scholar 

  19. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet. 16, 64–67 (1997).

    Article  CAS  Google Scholar 

  20. Kmiecik, T.E. & Shalloway, D. Activation and suppression of pp60c-src transforming ability by mutation of its primary sites of tyrosine phosphorylation. Cell 49, 65–73 (1987).

    Article  CAS  Google Scholar 

  21. Tice, D.A., Biscardi, J.S., Nickles, A.L. & Parsons, S.J. Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc. Natl. Acad. Sci. USA 96, 1415–1420 (1999).

    Article  CAS  Google Scholar 

  22. Ishizawar, R. & Parsons, S.J. c-Src and cooperating partners in human cancer. Cancer Cell 6, 209–214 (2004).

    Article  CAS  Google Scholar 

  23. Baselga, J. & Swain, S.M. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat. Rev. Cancer 9, 463–475 (2009).

    Article  CAS  Google Scholar 

  24. Junttila, T.T. et al. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 15, 429–440 (2009).

    Article  CAS  Google Scholar 

  25. Tabernero, J. et al. Phase I study of AZD0530, an oral potent inhibitor of Src kinase: First demonstration of inhibition of Src activity in human cancers. in ASCO Meeting Vol. 25, 3520 (2007).

    Google Scholar 

  26. Reagan-Shaw, S., Nihal, M. & Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 22, 659–661 (2008).

    Article  CAS  Google Scholar 

  27. Stommel, J.M. et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318, 287–290 (2007).

    Article  CAS  Google Scholar 

  28. Tol, J. et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N. Engl. J. Med. 360, 563–572 (2009).

    Article  CAS  Google Scholar 

  29. Bromann, P.A., Korkaya, H. & Courtneidge, S.A. The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 23, 7957–7968 (2004).

    Article  CAS  Google Scholar 

  30. Parsons, J.T. & Parsons, S.J. Src family protein tyrosine kinases: cooperating with growth factor and adhesion signaling pathways. Curr. Opin. Cell Biol. 9, 187–192 (1997).

    Article  CAS  Google Scholar 

  31. Biscardi, J.S. et al. c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J. Biol. Chem. 274, 8335–8343 (1999).

    Article  CAS  Google Scholar 

  32. Karni, R., Jove, R. & Levitzki, A. Inhibition of pp60c-Src reduces Bcl-XL expression and reverses the transformed phenotype of cells overexpressing EGF and HER-2 receptors. Oncogene 18, 4654–4662 (1999).

    Article  CAS  Google Scholar 

  33. Belsches-Jablonski, A.P. et al. Src family kinases and HER2 interactions in human breast cancer cell growth and survival. Oncogene 20, 1465–1475 (2001).

    Article  CAS  Google Scholar 

  34. Ishizawar, R.C., Miyake, T. & Parsons, S.J. c-Src modulates ErbB2 and ErbB3 heterocomplex formation and function. Oncogene 26, 3503–3510 (2007).

    Article  CAS  Google Scholar 

  35. Nautiyal, J. et al. ErbB-inhibitory protein: a modified ectodomain of epidermal growth factor receptor synergizes with dasatinib to inhibit growth of breast cancer cells. Mol. Cancer Ther. 9, 1503–1514 (2010).

    Article  CAS  Google Scholar 

  36. Wang, S.E. et al. Transforming growth factor beta induces clustering of HER2 and integrins by activating Src-focal adhesion kinase and receptor association to the cytoskeleton. Cancer Res. 69, 475–482 (2009).

    Article  CAS  Google Scholar 

  37. Seoane, S., Montero, J.C., Ocana, A. & Pandiella, A. Effect of multikinase inhibitors on caspase-independent cell death and DNA damage in HER2-overexpressing breast cancer cells. J. Natl. Cancer Inst. 102, 1432–1446 (2010).

    Article  CAS  Google Scholar 

  38. Lu, C.H. et al. Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency. Clin. Cancer Res. 13, 5883–5888 (2007).

    Article  CAS  Google Scholar 

  39. LoPiccolo, J., Blumenthal, G.M., Bernstein, W.B. & Dennis, P.A. Targeting the PI3K/AKT/mTOR pathway: effective combinations and clinical considerations. Drug Resist. Updat. 11, 32–50 (2008).

    Article  CAS  Google Scholar 

  40. Johnson, D. et al. Regulation of both apoptosis and cell survival by the v-Src oncoprotein. Cell Death Differ. 7, 685–696 (2000).

    Article  CAS  Google Scholar 

  41. Webb, D.J. et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat. Cell Biol. 6, 154–161 (2004).

    Article  CAS  Google Scholar 

  42. Ren, Z. & Schaefer, T.S. ErbB-2 activates Stat3α in a Src- and JAK2-dependent manner. J. Biol. Chem. 277, 38486–38493 (2002).

    Article  CAS  Google Scholar 

  43. Kennedy, S.G. et al. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 11, 701–713 (1997).

    Article  CAS  Google Scholar 

  44. Olayioye, M.A., Badache, A., Daly, J.M. & Hynes, N.E. An essential role for Src kinase in ErbB receptor signaling through the MAPK pathway. Exp. Cell Res. 267, 81–87 (2001).

    Article  CAS  Google Scholar 

  45. Tan, M., Li, P., Sun, M., Yin, G. & Yu, D. Upregulation and activation of PKC alpha by ErbB2 through Src promotes breast cancer cell invasion that can be blocked by combined treatment with PKCα and Src inhibitors. Oncogene 25, 3286–3295 (2006).

    Article  CAS  Google Scholar 

  46. Bowman, T. et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc. Natl. Acad. Sci. USA 98, 7319–7324 (2001).

    Article  CAS  Google Scholar 

  47. Franke, T.F., Hornik, C.P., Segev, L., Shostak, G.A. & Sugimoto, C. PI3K/Akt and apoptosis: size matters. Oncogene 22, 8983–8998 (2003).

    Article  CAS  Google Scholar 

  48. Chang, F. et al. Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ERK pathway. Int. J. Oncol. (Review) 22, 469–480 (2003).

    CAS  Google Scholar 

  49. Al Zaid Siddiquee, K. & Turkson, J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res. 18, 254–267 (2008).

    Article  CAS  Google Scholar 

  50. Zhang, X.H. et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16, 67–78 (2009).

    Article  CAS  Google Scholar 

  51. Boyer, B., Bourgeois, Y. & Poupon, M.F. Src kinase contributes to the metastatic spread of carcinoma cells. Oncogene 21, 2347–2356 (2002).

    Article  CAS  Google Scholar 

  52. Nahta, R., Takahashi, T., Ueno, N.T., Hung, M.C. & Esteva, F.J. P27kip1 down-regulation is associated with trastuzumab resistance in breast cancer cells. Cancer Res. 64, 3981–3986 (2004).

    Article  CAS  Google Scholar 

  53. Lee, G.Y., Kenny, P.A., Lee, E.H. & Bissell, M.J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4, 359–365 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank AstraZeneca for providing us with saracatinib and W. Zhang in the Department of Pathology, MD Anderson Cancer Center for providing us with the IGF-1R expression vector. We also thank C. Neal, J. Lu, S. Rehman and F.J. Lowery for insightful comments on this manuscript. This work was supported by US National Institutes of Health grants P30-CA 16672 (MD Anderson Cancer Center), RO1-CA112567 (D.Y.), PO1-CA099031 project 4 (D.Y.), MD Anderson Cancer Center Breast SPORE P50 CA116199 (G.N.H.) project 4 (D.Y.), US Department of Defense Center of Excellence subproject W81XWH-06-2-0033 (D.Y.), Susan G. Komen Breast Cancer Foundation promise grant KG091020 (D.Y.), Cancer Prevention Research Institute of Texas grant RP100726 (D.Y.), the MD Anderson Cancer Center Breast SPORE Career Development Award (S.Z.) and the Susan G. Komen Breast Cancer Foundation postdoctoral fellowship (S.Z.). D.Y. is the Hubert L. and Olive Stringer Distinguished Chair in Basic Science at MD Anderson Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

S.Z., W.-C.H. and D.Y. designed experiments and analyzed data; S.Z., W.-C.H., H.G., P.L., S.-B.P., S.W.B., Y.X., L.-M.T. and Z.D. carried out experiments; S.Z., H.G. and S.-H.L. did statistical analysis of clinical data; A.A.S. collected tumor samples and evaluated immunohistochemistry staining with H.G.; G.N.H. and F.J.E. collected clinical patient information and analyzed patient response data; S.Z., S.W.B. and D.Y. wrote the manuscript.

Corresponding author

Correspondence to Dihua Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–22, Supplementary Table 1 and Supplementary Methods (PDF 511 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Huang, WC., Li, P. et al. Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat Med 17, 461–469 (2011). https://doi.org/10.1038/nm.2309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2309

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer