Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy

Abstract

Candida albicans is a major fungal pathogen that causes serious systemic and mucosal infections in immunocompromised individuals. In yeast, histone H3 Lys56 acetylation (H3K56ac) is an abundant modification regulated by enzymes that have fungal-specific properties, making them appealing targets for antifungal therapy. Here we demonstrate that H3K56ac in C. albicans is regulated by the RTT109 and HST3 genes, which respectively encode the H3K56 acetyltransferase (Rtt109p) and deacetylase (Hst3p). We show that reduced levels of H3K56ac sensitize C. albicans to genotoxic and antifungal agents. Inhibition of Hst3p activity by conditional gene repression or nicotinamide treatment results in a loss of cell viability associated with abnormal filamentous growth, histone degradation and gross aberrations in DNA staining. We show that genetic or pharmacological alterations in H3K56ac levels reduce virulence in a mouse model of C. albicans infection. Our results demonstrate that modulation of H3K56ac is a unique strategy for treatment of C. albicans and, possibly, other fungal infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: H3K56 acetylation modulates genotoxic and fungicidal agent sensitivity in C. albicans.
Figure 2: HST3 controls H3K56 deacetylation and is required for cell viability in C. albicans.
Figure 3: HST3 repression triggers abnormal changes in cell morphology and DNA staining.
Figure 4: HST3 repression and nicotinamide are cytotoxic to C. albicans strains that express RTT109.
Figure 5: Nicotinamide inhibits growth of several clinically important pathogenic fungi.
Figure 6: Modulation of H3K56ac levels reduces virulence in a mouse model of C. albicans infection.

Similar content being viewed by others

References

  1. Celic, I. et al. The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr. Biol. 16, 1280–1289 (2006).

    Article  CAS  Google Scholar 

  2. Masumoto, H., Hawke, D., Kobayashi, R. & Verreault, A. A role for cell-cycle–regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436, 294–298 (2005).

    Article  CAS  Google Scholar 

  3. Hyland, E.M. et al. Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol. Cell. Biol. 25, 10060–10070 (2005).

    Article  CAS  Google Scholar 

  4. Ozdemir, A. et al. Characterization of lysine 56 of histone H3 as an acetylation site in Saccharomyces cerevisiae. J. Biol. Chem. 280, 25949–25952 (2005).

    Article  CAS  Google Scholar 

  5. Xu, F., Zhang, K. & Grunstein, M. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121, 375–385 (2005).

    Article  CAS  Google Scholar 

  6. Zhou, H., Madden, B.J., Muddiman, D.C. & Zhang, Z. Chromatin assembly factor 1 interacts with histone H3 methylated at lysine 79 in the processes of epigenetic silencing and DNA repair. Biochemistry 45, 2852–2861 (2006).

    Article  CAS  Google Scholar 

  7. Das, C., Lucia, M.S., Hansen, K.C. & Tyler, J.K. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459, 113–117 (2009).

    Article  CAS  Google Scholar 

  8. Tjeertes, J.V., Miller, K.M. & Jackson, S.P. Screen for DNA-damage–responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J. 28, 1878–1889 (2009).

    Article  CAS  Google Scholar 

  9. Xie, W. et al. Histone h3 lysine 56 acetylation is linked to the core transcriptional network in human embryonic stem cells. Mol. Cell 33, 417–427 (2009).

    Article  CAS  Google Scholar 

  10. Yuan, J., Pu, M., Zhang, Z. & Lou, Z. Histone H3–K56 acetylation is important for genomic stability in mammals. Cell Cycle 8, 1747–1753 (2009).

    Article  CAS  Google Scholar 

  11. Driscoll, R., Hudson, A. & Jackson, S.P. Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315, 649–652 (2007).

    Article  CAS  Google Scholar 

  12. Han, J. et al. Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315, 653–655 (2007).

    Article  CAS  Google Scholar 

  13. Tsubota, T. et al. Histone H3–K56 acetylation is catalyzed by histone chaperone-dependent complexes. Mol. Cell 25, 703–712 (2007).

    Article  CAS  Google Scholar 

  14. Maas, N.L., Miller, K.M., DeFazio, L.G. & Toczyski, D.P. Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol. Cell 23, 109–119 (2006).

    Article  CAS  Google Scholar 

  15. Thaminy, S. et al. Hst3 is regulated by Mec1-dependent proteolysis and controls the S phase checkpoint and sister chromatid cohesion by deacetylating histone H3 at lysine 56. J. Biol. Chem. 282, 37805–37814 (2007).

    Article  CAS  Google Scholar 

  16. Berman, J. & Sudbery, P.E. Candida albicans: a molecular revolution built on lessons from budding yeast. Nat. Rev. Genet. 3, 918–930 (2002).

    Article  CAS  Google Scholar 

  17. Cowen, L.E., Anderson, J.B. & Kohn, L.M. Evolution of drug resistance in Candida albicans. Annu. Rev. Microbiol. 56, 139–165 (2002).

    Article  CAS  Google Scholar 

  18. Pfaller, M.A. & Diekema, D.J. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20, 133–163 (2007).

    Article  CAS  Google Scholar 

  19. Wisplinghoff, H. et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39, 309–317 (2004).

    Article  Google Scholar 

  20. Sims, C.R., Ostrosky-Zeichner, L. & Rex, J.H. Invasive candidiasis in immunocompromised hospitalized patients. Arch. Med. Res. 36, 660–671 (2005).

    Article  Google Scholar 

  21. Akins, R.A. An update on antifungal targets and mechanisms of resistance in Candida albicans. Med. Mycol. 43, 285–318 (2005).

    Article  CAS  Google Scholar 

  22. Perlin, D.S. Resistance to echinocandin-class antifungal drugs. Drug Resist. Updat. 10, 121–130 (2007).

    Article  CAS  Google Scholar 

  23. Wang, L., Tang, Y., Cole, P.A. & Marmorstein, R. Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr. Opin. Struct. Biol. 18, 741–747 (2008).

    Article  CAS  Google Scholar 

  24. Frye, R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273, 793–798 (2000).

    Article  CAS  Google Scholar 

  25. Kelly, J., Rowan, R., McCann, M. & Kavanagh, K. Exposure to caspofungin activates Cap and Hog pathways in Candida albicans. Med. Mycol. 47, 697–706 (2009).

    Article  CAS  Google Scholar 

  26. Roemer, T. et al. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol. Microbiol. 50, 167–181 (2003).

    Article  CAS  Google Scholar 

  27. Deere, D. et al. Flow cytometry and cell sorting for yeast viability assessment and cell selection. Yeast 14, 147–160 (1998).

    Article  CAS  Google Scholar 

  28. Sudbery, P., Gow, N. & Berman, J. The distinct morphogenic states of Candida albicans. Trends Microbiol. 12, 317–324 (2004).

    Article  CAS  Google Scholar 

  29. Haldar, D. & Kamakaka, R.T. Schizosaccharomyces pombe Hst4 functions in DNA damage response by regulating histone H3 K56 acetylation. Eukaryot. Cell 7, 800–813 (2008).

    Article  CAS  Google Scholar 

  30. Xhemalce, B. et al. Regulation of histone H3 lysine 56 acetylation in Schizosaccharomyces pombe. J. Biol. Chem. 282, 15040–15047 (2007).

    Article  CAS  Google Scholar 

  31. Mullick, A. et al. Dysregulated inflammatory response to Candida albicans in a C5-deficient mouse strain. Infect. Immun. 72, 5868–5876 (2004).

    Article  CAS  Google Scholar 

  32. Mullick, A. et al. Cardiac failure in C5-deficient A/J mice after Candida albicans infection. Infect. Immun. 74, 4439–4451 (2006).

    Article  CAS  Google Scholar 

  33. Tuite, A., Elias, M., Picard, S., Mullick, A. & Gros, P. Genetic control of susceptibility to Candida albicans in susceptible A/J and resistant C57BL/6J mice. Genes Immun. 6, 672–682 (2005).

    Article  CAS  Google Scholar 

  34. Maiese, K., Chong, Z.Z., Hou, J. & Shang, Y.C. The vitamin nicotinamide: translating nutrition into clinical care. Molecules 14, 3446–3485 (2009).

    Article  CAS  Google Scholar 

  35. Dizdaroglu, M. Base-excision repair of oxidative DNA damage by DNA glycosylases. Mutat. Res. 591, 45–59 (2005).

    Article  CAS  Google Scholar 

  36. Bogan, K.L. & Brenner, C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu. Rev. Nutr. 28, 115–130 (2008).

    Article  CAS  Google Scholar 

  37. Niren, N.M. Pharmacologic doses of nicotinamide in the treatment of inflammatory skin conditions: a review. Cutis 77, 11–16 (2006).

    PubMed  Google Scholar 

  38. Cosgrove, M.S. et al. The structural basis of sirtuin substrate affinity. Biochemistry 45, 7511–7521 (2006).

    Article  CAS  Google Scholar 

  39. Blander, G. et al. SIRT1 shows no substrate specificity in vitro. J. Biol. Chem. 280, 9780–9785 (2005).

    Article  CAS  Google Scholar 

  40. Garske, A.L. & Denu, J.M. SIRT1 top 40 hits: use of one-bead, one-compound acetyl-peptide libraries and quantum dots to probe deacetylase specificity. Biochemistry 45, 94–101 (2006).

    Article  CAS  Google Scholar 

  41. Saunders, L.R. & Verdin, E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26, 5489–5504 (2007).

    Article  CAS  Google Scholar 

  42. Hirao, M. et al. Identification of selective inhibitors of NAD+-dependent deacetylases using phenotypic screens in yeast. J. Biol. Chem. 278, 52773–52782 (2003).

    Article  CAS  Google Scholar 

  43. Pfaller, M.A. et al. Results from the ARTEMIS Drosoph. Inf. Serv.K global antifungal surveillance study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida species to fluconazole and voriconazole determined by CLSI standardized disk diffusion. J. Clin. Microbiol. 48, 1366–1377 (2010).

    Article  CAS  Google Scholar 

  44. Pappas, P.G. et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 503–535 (2009).

    Article  CAS  Google Scholar 

  45. Dagenais, T.R. & Keller, N.P. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin. Microbiol. Rev. 22, 447–465 (2009).

    Article  CAS  Google Scholar 

  46. Kushnirov, V.V. Rapid and reliable protein extraction from yeast. Yeast 16, 857–860 (2000).

    Article  CAS  Google Scholar 

  47. Gunjan, A. & Verreault, A.A. Rad53 kinase–dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115, 537–549 (2003).

    Article  CAS  Google Scholar 

  48. Poveda, A. et al. Hif1 is a component of yeast histone acetyltransferase B, a complex mainly localized in the nucleus. J. Biol. Chem. 279, 16033–16043 (2004).

    Article  CAS  Google Scholar 

  49. Drogaris, P., Wurtele, H., Masumoto, H., Verreault, A. & Thibault, P. Comprehensive profiling of histone modifications using a label-free approach and its applications in determining structure-function relationships. Anal. Chem. 80, 6698–6707 (2008).

    Article  CAS  Google Scholar 

  50. Schmitt, M.E., Brown, T.A. & Trumpower, B.L. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18, 3091–3092 (1990).

    Article  CAS  Google Scholar 

  51. Tsao, S., Rahkhoodaee, F. & Raymond, M. Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Antimicrob. Agents Chemother. 53, 1344–1352 (2009).

    Article  CAS  Google Scholar 

  52. Trunk, K. et al. Depletion of the cullin Cdc53p induces morphogenetic changes in Candida albicans. Eukaryot. Cell 8, 756–767 (2009).

    Article  CAS  Google Scholar 

  53. Horsman, M.R., Siemann, D.W., Chaplin, D.J. & Overgaard, J. Nicotinamide as a radiosensitizer in tumours and normal tissues: the importance of drug dose and timing. Radiother. Oncol. 45, 167–174 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Roemer (Merck Research Laboratory) for providing strain CaSS1 and plasmids pHIS3 and pSAT-Tet, G. St-Germain (Laboratoire de santé publique du Québec) for strains MY067497, MY067743, MY070362, MY070589, MY069520, MY070954, MY070968 and MY070627, C. Restieri and M. Laverdière (Hôpital Maisonneuve-Rosemont) for strain 372.73374.1, C. Bachewich (Concordia University) for strain R153 and T. Edlind (Drexel University College of Medicine) for strain 20464. We are indebted to T. Roemer and M. Whiteway for critical reading of the manuscript. We thank F. Malenfant, J. Leroy, M. Mercier and P. Liscourt for excellent assistance in mouse handling. We are also grateful for the availability of the Candida Genome Database. This work was supported by research grants from the Canadian Institutes of Health Research to M.R. (CTP-79843, III-94587), A.M. (CTP-79843) and A.V. (CTP-79392) and from the National Science and Engineering Research Council of Canada to P.T. (STGP-322143-05). This is National Research Council of Canada publication number 52756. The Institute for Research in Immunology and Cancer is supported by funds from the Canadian Center of Excellence in Commercialization and Research, the Canadian Foundation for Innovation, and the Fonds de la Recherche en Santé du Québec.

Author information

Authors and Affiliations

Authors

Contributions

H.W. and S.T. designed and performed most experiments; G.L. constructed the yeast strains used in this study; J.T. and S.T. performed the fungal load and cytokine analyses; A.M. and M.R. designed and supervised the mouse studies; P.D., P.T. and A.V. designed and performed mass spectrometry experiments; E.-H.L. provided technical support; all authors participated in manuscript preparation; M.R. and A.V. supervised the study.

Corresponding authors

Correspondence to Alain Verreault or Martine Raymond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–4, Supplementary Results and Supplementary Methods (PDF 1105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wurtele, H., Tsao, S., Lépine, G. et al. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med 16, 774–780 (2010). https://doi.org/10.1038/nm.2175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing