Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AID mutant analyses indicate requirement for class-switch-specific cofactors

Abstract

Activation-induced cytidine deaminase (AID) is the essential and sole B cell–specific factor required for class-switch recombination (CSR) and somatic hypermutation (SHM). However, it is not known how AID differentially regulates these two independent events. Involvement of several cofactors interacting with AID has been indicated by scattered distribution of loss-of-function point mutations and evolutionary conservation of the entire 198-amino-acid protein. Here, we report that human AID mutant proteins with insertions, replacements or truncations in the C-terminal region retained strong SHM activity but almost completely lost CSR activity. These results indicate that AID requires interaction with a cofactor(s) specific to CSR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping of AID mutants and sequence conservation of AID.
Figure 2: In vitro AID mutant CSR and SHM activity.
Figure 3: Complex formation of AID.

Similar content being viewed by others

References

  1. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002).

    Article  CAS  Google Scholar 

  2. Kinoshita, K. & Honjo, T. Linking class-switch recombination with somatic hypermutation. Nat. Rev. Mol. Cell Biol. 2, 493–503 (2001).

    Article  CAS  Google Scholar 

  3. Reynaud, C.A., Aoufouchi, S., Faili, A. & Weill, J.C. What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nat. Immunol. 4, 631–638 (2003).

    Article  CAS  Google Scholar 

  4. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).

    Article  CAS  Google Scholar 

  5. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  Google Scholar 

  6. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 201, 565–575 (2000).

    Article  Google Scholar 

  7. Okazaki, I.M., Kinoshita, K., Muramatsu, M., Yoshikawa, K. & Honjo, T. The AID enzyme induces class switch recombination in fibroblasts. Nature 416, 340–345 (2002).

    Article  CAS  Google Scholar 

  8. Yoshikawa, K. et al. AID is a hypermutator of actively-transcribed genes in fibroblasts. Science 296, 2033–2036 (2002).

    Article  CAS  Google Scholar 

  9. Arakawa, H., Hauschild, J. & Buerstedde, J.M. Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science 295, 1301–1306 (2002).

    Article  CAS  Google Scholar 

  10. Harris, R.S., Sale, J.E., Petersen-Mahrt, S.K. & Neuberger, M.S. AID is essential for immunoglobulin V gene conversion in a cultured B cell line. Curr. Biol. 12, 435–438 (2002).

    Article  CAS  Google Scholar 

  11. Muto, T., Muramatsu, M., Taniwaki, M., Kinoshita, K. & Honjo, T. Isolation, tissue distribution, and chromosomal localization of the human activation-induced cytidine deaminase (AID) gene. Genomics 68, 85–88 (2000).

    Article  CAS  Google Scholar 

  12. Doi, T., Kinoshita, K., Ikegawa, M., Muramatsu, M. & Honjo, T. De novo protein synthesis is required for the activation-induced cytidine deaminase function in class-switch recombination. Proc. Natl. Acad. Sci. USA 100, 2634–2638 (2003).

    Article  CAS  Google Scholar 

  13. Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002).

    Article  CAS  Google Scholar 

  14. Ramiro, A.R., Stavropoulos, P., Jankovic, M. & Nussenzweig, M.C. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat. Immunol. 4, 452–456 (2003).

    Article  CAS  Google Scholar 

  15. Dickerson, S.K., Market, E., Besmer, E. & Papavasiliou, F.N. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med. 197, 1291–1296 (2003).

    Article  CAS  Google Scholar 

  16. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    Article  CAS  Google Scholar 

  17. Bransteitter, R., Pham, P., Scharff. M.D. & Goodman, M.F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA 100, 4102–4107 (2003).

    Article  CAS  Google Scholar 

  18. Di Noia, J. & Neuberger, M.S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylate. Nature 419, 43–48 (2002).

    Article  CAS  Google Scholar 

  19. Rada, C. et al. Immunoglobulin isotype switching in inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 12, 1748–1755 (2002).

    Article  CAS  Google Scholar 

  20. Azuma, T., Motoyama, N., Fields, L.E. & Loh, D.Y. Mutations of the chloramphenicol acetyl transferase transgene driven by the immunoglobulin promoter and intron enhancer. Int. Immunol. 5, 121–130 (1993).

    Article  CAS  Google Scholar 

  21. Yelamos, J. et al. Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature 376, 225–229 (1995).

    Article  CAS  Google Scholar 

  22. Kinoshita, K., Tashiro, J., Tomita, S., Lee, C.G. & Honjo, T. Target specificity of immunoglobulin class switch recombination is not determined by nucleotide sequences of S regions. Immunity 9, 849–858 (1998).

    Article  CAS  Google Scholar 

  23. Tashiro, J., Kinoshita, K. & Honjo, T. Palindromic but not G-rich sequences are targets of class switch recombination. Int. Immunol. 13, 495–505 (2001).

    Article  CAS  Google Scholar 

  24. Shinkura, R. et al. The influence of transcriptional orientation on endogenous switch region function. Nat. Immunol. 4, 435–441 (2003).

    Article  CAS  Google Scholar 

  25. Reaban, M.E., Lebowitz, J. & Griffin, J.A. Transcription induces the formation of a stable RNA.DNA hybrid in the immunoglobulin α switch region. J. Biol. Chem. 269, 21850–21857 (1994).

    CAS  PubMed  Google Scholar 

  26. Mussmann, R., Courtet, M., Schwager, J. & Du Pasquier, L. Microsites for immunoglobulin switch recombination beakpoints from Xenopus to mammals. Eur. J. Immunol. 27, 1610–1619 (1997).

    Article  Google Scholar 

  27. Tian, M. & Alt, F.W. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J. Biol. Chem. 275, 24163–24172 (2000).

    Article  CAS  Google Scholar 

  28. Mizuta, R. et al. Molecular visualization of immunoglobulin switch region RNA/DNA complex by atomic force microscope. J. Biol. Chem. 278, 4431–4434 (2003).

    Article  CAS  Google Scholar 

  29. Yu, K., Chedin, F., Hsieh, C-L., Wilson, T.E. & Lieber, M.R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4, 442–451 (2003).

    Article  CAS  Google Scholar 

  30. Faili, A. et al. AID-dependent somatic hypermutation occurs as a DNA single-strand event in the BL2 cell line. Nat. Immunol. 3, 815–821 (2002).

    Article  CAS  Google Scholar 

  31. Peterson, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665 (2001).

    Article  Google Scholar 

  32. Chen, X., Kinoshita, K. & Honjo, T. Variable deletion and duplication at recombination junction ends: implication for staggered double-strand cleavage in class-switch recombination. Proc. Natl. Acad. Sci. USA 98, 13860–13865 (2001).

    Article  CAS  Google Scholar 

  33. Minegishi, Y. et al. Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome. Clin. Immunol. 97, 203–201 (2000).

    Article  CAS  Google Scholar 

  34. Zhu, Y. et al. Type two hyper-IgM syndrome caused by mutation in activation-induced cytidine deaminase. J. Med. Dent. Sci. 50, 41–46 (2003).

    PubMed  Google Scholar 

  35. Navaratnam, N. et al. Escherichia coli cytidine deaminase provides a molecular model for Apo RNA editing and a mechanism for RNA substrate recognition. J. Mol. Biol. 275, 695–714 (1998).

    Article  CAS  Google Scholar 

  36. Fagarasan, S., Kinoshita, K., Muramatsu, M., Ikuta, K. & Honjo, T. In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413, 639–643 (2001).

    Article  CAS  Google Scholar 

  37. Kinoshita, K., Harigai, M., Fagarasan, S., Muramatsu, M. & Honjo, T. A hallmark of active class switch recombination: Transcript directed by I promoters on looped-out circular DNAs. Proc. Natl. Acad. Sci. USA 98, 12620–12633 (2001).

    Article  CAS  Google Scholar 

  38. Martin, A. et al. Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas. Nature 415, 802–806 (2002).

    Article  CAS  Google Scholar 

  39. Flajnick, M.F. Comparative analyses of immunoglobulin genes: surprise and portents. Nature Rev. Imuunol. 2, 688–698 (2002).

    Article  Google Scholar 

  40. Mehta, A., Kinter, M.T., Sherman, N.E. & Driscoll, D.M. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mol. Cell. Biol. 20, 1846–1854 (2000).

    Article  CAS  Google Scholar 

  41. Henderson, J.O., Blanc, V. & Davidson N.O. Isolation, characterization and developmental regulation of the human apobec-1 complementation factor (ACF) gene. Biochim. Biophys. Acta 1522, 22–30 (2001).

    Article  CAS  Google Scholar 

  42. Harris, R.S., Petersen-Mahrt, S.K. & Neuberger, M.S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002).

    Article  CAS  Google Scholar 

  43. Pham, P., Bransteitter, R., Petruska, J. & Goodman, M.F. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424, 103–107 (2003).

    Article  CAS  Google Scholar 

  44. Maas, S., Rich, A. Changing genetic information through RNA editing. Bioessays 22, 790–802 (2000).

    Article  CAS  Google Scholar 

  45. Gallo, A., Keegan, L.P., Ring, G.M. & O'Connell, M.A. An ADAR that edits transcripts encoding ion channel subunits functions as a dimer. EMBO J. 22, 3421–3430 (2003).

    Article  CAS  Google Scholar 

  46. Cho, D.S, Yang, W., Lee, J.T., Shiekhattar, R., Murray, J.M. & Nishikura, K. Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA. J. Biol. Chem. 278, 17093–17102 (2003).

    Article  CAS  Google Scholar 

  47. Sowden, M.P. et al. The editosome for cytidine to uridine mRNA editing has a native complexity of 27S: identification of intracellular domains containing active and inactive editing factors. J. Cell Sci. 115, 1027–1039 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Nakata, T. Toyoshima and E. Inoue for technical support; T. Nishikawa and Y. Shiraki for help in preparing the manuscript; S. Fagarasan, B. Meek and R. Shinkura for critical reading of the manuscript; and P. Lane for clinical support of patients. This investigation was supported by The Japan Society for the Promotion of Science (to V.-T.T.) and Center-of-Excellence grants from Minister of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasuku Honjo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ta, VT., Nagaoka, H., Catalan, N. et al. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat Immunol 4, 843–848 (2003). https://doi.org/10.1038/ni964

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni964

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing