Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The influence of transcriptional orientation on endogenous switch region function

Abstract

Immunoglobulin heavy chain (IgH) class switch recombination (CSR) takes place between large switch (S) regions that precede exons of the constant region. The precise functions of the S region are controversial, although transcription of the S region targets CSR. We have tested the effects of deletion, inversion and replacement of the endogenous 12-kilobase Sγ1 region on CSR in vivo. Here we show that Sγ1 is required for CSR, that CSR is effected by a 1-kilobase sequence that generates a G-rich transcript, and that inversion of Sγ1 or the G-rich sequence decreases CSR. We conclude that Sγ1 function is dependent on orientation and lacks an absolute requirement for common S region motifs. We propose that single-stranded DNA stabilized by transcription-dependent, higher order structures is a primary substrate of CSR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutation of Sγ1.
Figure 2: RT-PCR analysis of γ1 germline transcripts.
Figure 3: ELISA analysis of IgG1 production in Sγ1 mutants.
Figure 4: Location of μ-γ1 recombination junctions.

Similar content being viewed by others

References

  1. Manis, J.P., Tian, M. & Alt, F.W. Mechanism and control of class-switch recombination. Trends Immunol. 23, 31–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Dunnick, W., Hertz, G.Z., Scappino, L. & Gritzmacher, C. DNA sequences at immunoglobulin switch region recombination sites. Nucleic Acids Res. 21, 365–372 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee, C.G., Kondo, S. & Honjo, T. Frequent but biased class switch recombination in the Sμ flanking regions. Curr. Biol. 8, 227–230 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Shanmugam, A., Shi, M.J., Yauch, L., Stavnezer, J. & Kenter, A.L. Evidence for class-specific factors in immunoglobulin isotype switching. J. Exp. Med. 191, 1365–1380 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma, L., Wortis, H.H. & Kenter, A.L. Two new isotype-specific switching activities detected for Ig class switching. J. Immunol. 168, 2835–2846 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Reaban, M.E. & Griffin, J.A. Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature 348, 342–344 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Reaban, M.E., Lebowitz, J. & Griffin, J.A. Transcription induces the formation of a stable RNA-DNA hybrid in the immunoglobulin α switch region. J. Biol. Chem. 269, 21850–21857 (1994).

    CAS  PubMed  Google Scholar 

  9. Daniels, G.A. & Lieber, M.R. RNA:DNA complex formation upon transcription of immunoglobulin switch regions: implications for the mechanism and regulation of class switch recombination. Nucleic Acids Res. 23, 5006–5011 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dempsey, L.A., Sun, H., Hanakahi, L.A. & Maizels, N. G4 DNA binding by LR1 and its subunits, nucleolin and hnRNP D, A role for G-G pairing in immunoglobulin switch recombination. J. Biol. Chem. 274, 1066–1071 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Tian, M. & Alt, F.W. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J. Biol. Chem. 275, 24163–24172 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Mizuta, R. et al. Molecular visualization of immunoglobulin switch region RNA/DNA complex by atomic force microscope. J. Biol. Chem. 278, 4431–4434 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Mussmann, R., Courtet, M., Schwager, J. & Du Pasquier, L. Microsites for immunoglobulin switch recombination breakpoints from Xenopus to mammals. Eur. J. Immunol. 27, 2610–2619 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Tashiro, J., Kinoshita, K. & Honjo, T. Palindromic but not G-rich sequences are targets of class switch recombination. Int. Immunol. 13, 495–505 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Luby, T.M., Schrader, C.E., Stavnezer, J. & Selsing, E. The μ switch region tandem repeats are important, but not required, for antibody class switch recombination. J. Exp. Med. 193, 159–168 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lutzker, S., Rothman, P., Pollock, R., Coffman, R. & Alt, F.W. Mitogen- and IL-4-regulated expression of germ-line Igγ2b transcripts: evidence for directed heavy chain class switching. Cell 53, 177–184 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Berton, M.T., Uhr, J.W. & Vitetta, E.S. Synthesis of germ-line γ1 immunoglobulin heavy-chain transcripts in resting B cells: induction by interleukin 4 and inhibition by interferon γ. Proc. Natl. Acad. Sci. USA 86, 2829–2833 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu, M. & Stavnezer, J. Structure of germline immunoglobulin heavy-chain γ1 transcripts in interleukin 4 treated mouse spleen cells. Dev. Immunol. 1, 11–17 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rothman, P. et al. Structure and expression of germline immunoglobulin γ3 heavy chain gene transcripts: implications for mitogen and lymphokine directed class-switching. Int. Immunol. 2, 621–627 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Rothman, P. et al. Structure and expression of germ line immunoglobulin heavy-chain ε transcripts: interleukin-4 plus lipopolysaccharide-directed switching to Cε . Mol. Cell. Biol. 10, 1672–1679 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Collins, J.T. & Dunnick, W.A. Germline transcripts of the murine immunoglobulin γ2a gene: structure and induction by IFN-γ. Int. Immunol. 5, 885–891 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Jung, S., Rajewsky, K. & Radbruch, A. Shutdown of class switch recombination by deletion of a switch region control element. Science 259, 984–987 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, J., Bottaro, A., Li, S., Stewart, V. & Alt, F.W. A selective defect in IgG2b switching as a result of targeted mutation of the Iγ2b promoter and exon. EMBO J. 12, 3529–3537 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bottaro, A. et al. S region transcription per se promotes basal IgE class switch recombination but additional factors regulate the efficiency of the process. EMBO J. 13, 665–674 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lorenz, M., Jung, S. & Radbruch, A. Switch transcripts in immunoglobulin class switching. Science 267, 1825–1828 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Harriman, G.R., Bradley, A., Das, S., Rogers-Fani, P. & Davis, A.C. IgA class switch in Iα exon-deficient mice. Role of germline transcription in class switch recombination. J. Clin. Invest. 97, 477–485 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Seidl, K.J. et al. An expressed neor cassette provides required functions of the Iγ2b exon for class switching. Int. Immunol. 10, 1683–1692 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Daniels, G.A. & Lieber, M.R. Strand specificity in the transcriptional targeting of recombination at immunoglobulin switch sequences. Proc. Natl. Acad. Sci. USA. 92, 5625–5629 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kinoshita, K., Tashiro, J., Tomita, S., Lee, C.G. & Honjo, T. Target specificity of immunoglobulin class switch recombination is not determined by nucleotide sequences of S regions. Immunity 9, 849–858 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. von Schwedler, U., Jack, H.M. & Wabl, M. Beswitched. The looping out model for immunoglobulin class switching. New Biol. 8, 657–662 (1990).

    Google Scholar 

  31. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX. Nature 414, 660–665 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Weill, J.C. et al. Ig gene hypermutation: a mechanism is due. Adv. Immunol. 80, 183–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Papavasiliou, F.N. & Schatz, D.G. Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 109 (Suppl.), S35–S44 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Chester, A., Scott, J., Anant, S. & Navaratnam, N. RNA editing: cytidine to uridine conversion in apolipoprotein B mRNA. Biochim. Biophys. Acta. 1494, 1–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Di Noia, J. & Neuberger, M.S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419, 43–48 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Rada, C. et al. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 12, 1748–1755 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Stavnezer, J. & Bradley, S.P. Does activation-induced deaminase initiate antibody diversification by DNA deamination? Trends Genet. 18, 541–543 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Storb, U. & Stavnezer, J. Immunoglobulin genes: generating diversity with AID and UNG. Curr Biol. 12, R725–R727 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Dudley, D.D. et al. Internal IgH class switch region deletions are position-independent and enhanced by AID expression. Proc. Natl. Acad. Sci. USA 99, 9984–9989 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nagaoka, H., Muramatsu, M., Yamamura, N., Kinoshita, K. & Honjo, T. Activation-induced deaminase (AID)-directed hypermutation in the immunoglobulin Sμ region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. J. Exp. Med. 195, 529–534 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yancopoulos, G.D. et al. Secondary genomic rearrangement events in pre-B cells: VHDJH replacement by a LINE-1 sequence and directed class switching. EMBO J. 5, 3259–3266 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stavnezer, J. et al. Immunoglobulin heavy-chain switching may be directed by prior induction of transcripts from constant-region genes. Proc. Natl. Acad. Sci. USA 85, 7704–7708 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sakai, E., Bottaro, A., Davidson, L., Sleckman, B.P. & Alt, F.W. Recombination and transcription of the endogenous Ig heavy chain locus is effected by the Ig heavy chain intronic enhancer core region in the absence of the matrix attachment regions. Proc. Natl. Acad. Sci. USA 96, 1526–1531 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sleckman, B.P., Khor, B., Monroe, R. & Alt, F.W. Assembly of productive T cell receptor δ variable region genes exhibits allelic inclusion. J. Exp. Med. 188, 1465–1471 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, J., Lansford, R., Stewart, V., Young, F. & Alt, F.W. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc. Natl. Acad. Sci. USA 90, 4528–4532 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hein, K. et al. Processing of switch transcripts is required for targeting of antibody class switch recombination. J. Exp. Med. 188, 2369–2374 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Radbruch, A., Muller, W. & Rajewsky, K. Class switch recombination is IgG1 specific on active and inactive IgH loci of IgG1-secreting B-cell blasts. Proc. Natl. Acad. Sci. USA 83, 3954–3957 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hummel, M., Berry, J.K. & Dunnick, W. Switch region content of hybridomas: the two spleen cell Igh loci tend to rearrange to the same isotype. J. Immunol. 138, 3539–3548 (1987).

    CAS  PubMed  Google Scholar 

  53. Winter, E., Krawinkel, U. & Radbruch, A. Directed Ig class switch recombination in activated murine B cells. EMBO J. 6, 1663–1671 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schultz, C. et al. Patterns and extent of isotype-specificity in the murine H chain switch DNA rearrangement. J. Immunol. 144, 363–370 (1990).

    CAS  PubMed  Google Scholar 

  55. Jung, S., Siebenkotten, G. & Radbruch, A. Frequency of immunoglobulin E class switching is autonomously determined and independent of prior switching to other classes. J. Exp. Med. 179, 2023–2026 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Ratmeyer, L., Vinayak, R., Zhong, Y.Y., Zon, G. & Wilson, W.D. Sequence specific thermodynamic and structural properties for DNA-RNA duplexes. Biochemistry 33, 5298–5304 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Yu, K., Chedin, F., Hsieh, C.-L., Wilson, T.E. & Lieber, M.R. R-loops at immunoglobulin class switch regions within the chromosomes of stimulated B cells. Nature Immunology, advance online publication, 7 april 2003 (doi:10.1038/ni919).

  58. Chaudhuri, J., Tian, M., Khuong, C., Chua, K., Pinaud, E. & Alt, F.W. Transcription targeted DNA deamination by the AID antibody diversification enzyme. Nature, in press.

Download references

Acknowledgements

We thank L. Davidson, D. Foy, A. Williams, N. Stokes and C. Kennedy for mouse work, and J. Manis, C. Bassing, A. Zarrin and J. Chaudhuri for comments on the manuscript. This work was supported by US National Institutes of Health grant AI31541 (to F.W.A.) and NIH training grant AI07512 (to M.T.). K.C. is supported by a Pfizer Postdoctoral Fellowship in Rheumatology/Immunology. F.W.A is an Investigator and R.S. is an Associate of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick W. Alt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinkura, R., Tian, M., Smith, M. et al. The influence of transcriptional orientation on endogenous switch region function. Nat Immunol 4, 435–441 (2003). https://doi.org/10.1038/ni918

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni918

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing