Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock

Abstract

Toll-like receptor-4 activation by lipopolysaccharide (LPS) induces the expression of interferon-β (IFN-β) in a MyD88-independent manner. Here we report that mice devoid of the JAK protein tyrosine kinase family member, Tyk2, were resistant to shock induced by high doses of LPS. Basal and LPS-induced expression of IFN-β and IFN-α4 mRNA in Tyk2-null macrophages were diminished. However, Tyk2-null mice showed normal systemic production of nitric oxide and proinflammatory cytokines and the in vivo response to tumor necrosis factor (TNF) was unperturbed. IFN-β–null but not STAT1-null mice were also resistant to high dose LPS treatment. Together, these data suggest that Tyk2 and IFN-β are essential effectors in LPS induced lethality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tyk2-null mice are resistant to endotoxin shock induced by high doses of E. coli LPS.
Figure 2: Normal LPS-induced inflammatory and stress response in Tyk2-null mice.
Figure 3: Tyk2-null peritoneal macrophages (PMs) show normal MyD88-dependent TLR4 signaling.
Figure 4: Impaired IFN activation in Tyk2-null peritoneal macrophages (PMs).
Figure 5: High-dose LPS challenge of STAT1-null mice.
Figure 6: IFN-β–null mice are resistant to high-dose LPS challenge, but produce normal amounts of IFN-γ, TNF and NO.

Similar content being viewed by others

References

  1. Beutler, B. & Rietschel, E.T. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol. 3, 169–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2, 907–916 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Dobrovolskaia, M.A. & Vogel, S.N. Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Inf. 4, 903–914 (2002).

    Article  CAS  Google Scholar 

  4. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Akira, S. Mammalian Toll-like receptors. Curr. Opin. Immunol. 15, 5–11 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Horng, T., Barton, G.M., Flavell, R.A. & Medzhitov, R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420, 329–332 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Yamamoto, M. et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Kawai, T. et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 167, 5887–5894 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Pestka, S., Langer, J.A., Zoon, K.C. & Samuel, C.E. Interferons and their actions. Annu. Rev. Biochem. 56, 727–777 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Decker, T., Stockinger, S., Karaghiosoff, M., Müller, M. & Kovarik, P. IFNs and Stats in innate immunity to microorganisms. J. Clin. Invest. 109, 1271–1277 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bogdan, C. The function of type I interferons in antimicrobial immunity. Curr. Opin. Immunol. 12, 419–424 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Toshchakov, V. et al. TLR4, but not TLR2, mediates IFN-β–induced Stat1α/β-dependent gene expression in macrophages. Nat. Immunol. 3, 392–398 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Levy, D.E. & Darnell, J.E.J. Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3, 651–662 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Shimoda, K. et al. Tyk2 plays a restricted role in IFN α signaling, although it is required for IL-12–mediated T cell function. Immunity 13, 561–571 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Karaghiosoff, M. et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity 13, 549–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Fantuzzi, G. et al. Effect of endotoxin in IL-1 β-deficient mice. J. Immunol. 157, 291–296 (1996).

    CAS  PubMed  Google Scholar 

  18. Kobierski, L.A., Srivastava, S. & Borsook, D. Systemic lipopolysaccharide and interleukin-1β activate the interleukin 6: STAT intracellular signaling pathway in neurons of mouse trigeminal ganglion. Neurosci. Lett. 281, 61–64 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Mattner, F. et al. Treatment with homodimeric interleukin-12 (IL-12) p40 protects mice from IL-12–dependent shock but not from tumor necrosis factor α-dependent shock. Infect. Immun. 65, 4734–4737 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pfeffer, K. et al. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73, 457–467 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Rothe, J. et al. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF- mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364, 798–802 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Beutler, B., Milsark, I.W. & Cerami, A. Passive immunization against cachectin/tumor necrosis factor (TNF) protects mice from the lethal effect of endotoxin. Science 299, 869–871 (1985).

    Article  Google Scholar 

  23. Marie, I., Durbin, J.E. & Levy, D.E. Differential viral induction of distinct interferon-α genes by positive feedback through interferon regulatory factor-7. EMBO J. 17, 6660–6669 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sing, A. et al. Bacterial induction of β interferon in mice is a function of the lipopolysaccharide component. Infect. Immun. 68, 1600–1607 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sato, M., Taniguchi, T. & Tanaka, N. The interferon system and interferon regulatory factor transcription factors – studies from gene knockout mice. Cytokine Growth Factor Rev. 12, 133–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Ohmori, Y. & Hamilton, T.A. Requirement for STAT1 in LPS-induced gene expression in macrophages. J. Leukoc. Biol. 69, 598–604 (2001).

    CAS  PubMed  Google Scholar 

  27. Durbin, J.E., Hackenmiller, R., Simon, M.C. & Levy, D.E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443–450 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Erlandsson, L. et al. Interferon-β is required for interferon-α production in mouse fibroblasts. Curr. Biol. 8, 223–226 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)–deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999).

    CAS  PubMed  Google Scholar 

  30. Haziot, A. et al. Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Cell 4, 407–414 (1996).

    CAS  Google Scholar 

  31. Nagai, Y. et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3, 667–672 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki, N. et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416, 750–756 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Erickson, S.L. et al. Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2–deficient mice. Nature 372, 560–563 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. MacMicking, J.D. et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81, 641–650 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Laubach, V.E., Shesely, E.G., Smithies, O. & Sherman, P.A. Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc. Natl. Acad. Sci. USA 92, 10688–10692 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 13, 539–548 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Deonarain, R. et al. Impaired antiviral response and α/β interferon induction in mice lacking β interferon. J. Virol. 74, 3404–3409 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takaoka, A. et al. Cross talk between intferferon-γ and -α/β signaling components in calveolar membrane domains. Science 288, 2357–2360 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Hirschfeld, M., Ma, Y., Weis, J.H., Vogel, S.N. & Weis, J.J. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J. Immunol. 165, 618–622 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Supajatura, V. et al. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J. Clin. Invest. 109, 1351–1359 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hirschfeld, M. et al. Signaling by Toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect. Immun. 69, 1477–1482 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Navarro, L. & David, M. p38-dependent activation of interferon regulatory factor 3 by lipopolysaccharide. J. Biol. Chem. 274, 35535–35538 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Shinobu, N. et al. Involvement of TIRAP/MAL in signaling for the activation of interferon regulatory factor 3 by lipopolysaccharide. FEBS Lett. 571, 251–256 (2002).

    Article  Google Scholar 

  44. Servant, M.J. et al. Identification of distinct signaling pathways leading to the phosphorylation of interferon regulatory factor 3. J. Biol. Chem. 276, 355–363 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Doyle, S.E. et al. IRF3 mediates a TLR3/TLR4-specific antiviral program. Immunity 17, 251–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Magram, J. et al. IL-12–deficient mice are defective in IFN γ production and type 1 cytokine responses. Immunity 4, 471–481 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Heinzel, F.P., Rerko, R.M., Ahmed, F. & Hujer, A.M. IFN-γ-independent production of IL-12 during murine endotoxemia. J. Immunol. 157, 4521–4528 (1996).

    CAS  PubMed  Google Scholar 

  48. Schindler, H., Lutz, M.B., Rollinghoff, M. & Bogdan, C. The production of IFN-γ by IL-12/IL-18–activated macrophages requires STAT4 signaling and is inhibited by IL-4. J. Immunol. 166, 3075–3082 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Hochholzer, P., Lipford, G.B., Wagner, H., Pfeffer, K. & Heeg, K. Role of interleukin-18 (IL-18) during lethal shock: decreased lipopolysaccharide sensitivity but normal superantigen reaction in IL-18–deficient mice. Infect. Immun. 68, 3502–3508 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shimoda, K. et al. Partial impairment of interleukin-12 (IL-12) and IL-18 signaling in Tyk2-deficient mice. Blood 99, 2094–2099 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Freudenberg, M.A. et al. A murine, IL-12–independent pathway of IFN-γ induction by gram-negative bacteria based on Stat4 activation by type I IFN and IL-18 signaling. J. Immunol. 169, 1665–1668 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Nguyen, K.B. et al. Critical role for Stat4 activation by type I interferons in the interferon-γ response to viral infection. Science 297, 2063–2066 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Car, B.D. et al. Interferon _ receptor deficient mice are resistant to endotoxic shock. J. Exp. Med. 179, 1437–1444 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Taniguchi, T. & Takaoka, A. A weak signal for strong responses: interferon-α/β revisited. Nat. Rev. Mol. Cell Biol. 2, 378–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Lee, C.-K., Gimeno, R. & Levy, D.E. Differential regulation of constitutive major histocompatibility complex class I expression in T and B lymphocytes. J. Exp. Med. 190, 1451–1463 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yamamoto, M. et al. Cutting edge: a novel Toll/IL-1 receptor domain–containing adapter that preferentially activates the IFN-b promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T. & Seya, T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3–mediated interferon-β induction. Nat. Immunol. 4, 161–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Lehmann, V., Freudenberg, M.A. & Galanos, C. Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal and D-galactosamine–treated mice. J. Exp. Med. 165, 657–663 (1987).

    Article  CAS  PubMed  Google Scholar 

  59. Schmidt, H.H., Warner, T.D., Nakane, M., Forstermann, U. & Murad, F. Regulation and subcellular location of nitrogen oxide synthases in RAW264.7 macrophages. Mol. Pharmacol. 41, 615–624 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Lajko, M. Deutschmann and G. Constantino for technical assistance, and C. Galanos and B. Strobl for helpful comments on the manuscript. This work was supported by Austrian Science Fund (FWF) grants P15335 (to M.K.), P14945 (to P.K.) and P15272 (to T.D.); by the German Research Foundation (grant DFG 996/3-1 to C.B.); and by the Austrian Ministry of Education Science and Culture (BM:BWK OEZBT GZ200.074/1-VI/1a/2002 to M.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Müller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karaghiosoff, M., Steinborn, R., Kovarik, P. et al. Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat Immunol 4, 471–477 (2003). https://doi.org/10.1038/ni910

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni910

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing