Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation

Abstract

Apoptosis is often accompanied by the degradation of chromosomal DNA. Caspase-activated DNase (CAD) is an endonuclease that is activated in dying cells, whereas DNase II is present in the lysosomes of macrophages. Here, we show that CAD−/− thymocytes did not undergo apoptotic DNA degradation. But, when apoptotic cells were phagocytosed by macrophages, their DNA was degraded by DNase II. The thymus of DNase II−/−CAD−/− embryos contained many foci carrying undigested DNA and the cellularity was severely reduced due to a block in T cell development. The interferon-β gene was strongly up-regulated in the thymus of DNase II−/−CAD−/− embryos, suggesting that when the DNA of apoptotic cells is left undigested, it can activate innate immunity leading to defects in thymic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of the CAD gene by homologous recombination.
Figure 2: DNA degradation of apoptotic cells in macrophages.
Figure 3: Impaired thymic development in DNase-targeted mouse embryos.
Figure 4: Accumulation of DNA in thymic macrophages of DNase-targeted embryos.

Similar content being viewed by others

References

  1. Kerr, J.F., Wyllie, A.H. & Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  Google Scholar 

  2. Jacobson, M.D., Weil, M. & Raff, M.C. Programmed cell death in animal development. Cell 88, 347–354 (1997).

    Article  CAS  Google Scholar 

  3. Vaux, D.L. & Korsmeyer, S.J. Cell death in development. Cell 96, 245–254 (1999).

    Article  CAS  Google Scholar 

  4. Raff, M. Cell suicide for beginners. Nature 396, 119–122 (1998).

    Article  CAS  Google Scholar 

  5. Nagata, S. Apoptosis by death factor. Cell 88, 355–365 (1997).

    Article  CAS  Google Scholar 

  6. Ashkenazi, A. & Dixit, V.M. Death receptors: signaling and modulation. Science 281, 1305–1308 (1998).

    Article  CAS  Google Scholar 

  7. Green, D.R. & Reed, J.C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).

    Article  CAS  Google Scholar 

  8. Thornberry, N.A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

    Article  CAS  Google Scholar 

  9. Earnshaw, W.C., Martins, L.M. & Kaufmann, S.H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383–424 (1999).

    Article  CAS  Google Scholar 

  10. Los, M., Wesselborg, S. & Schulze-Osthoff, K. The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. Immunity 10, 629–639 (1999).

    Article  CAS  Google Scholar 

  11. Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    Article  CAS  Google Scholar 

  12. Wyllie, A.H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555–556 (1980).

    Article  CAS  Google Scholar 

  13. Nagata, S., Nagase, H., Kawane, K., Mukae, N. & Fukuyama, H. Degradation of chromosomal DNA during apoptosis. Cell Death Differ. (in the press).

  14. Enari, M. et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50 (1998).

    Article  CAS  Google Scholar 

  15. Liu, X., Zou, H., Slaughter, C. & Wang, X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175–184 (1997).

    Article  CAS  Google Scholar 

  16. Sakahira, H., Enari, M. & Nagata, S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96–99 (1998).

    Article  CAS  Google Scholar 

  17. McCarty, J.S., Toh, S.Y. & Li, P. Multiple domains of DFF45 bind synergistically to DFF40: roles of caspase cleavage and sequestration of activator domain of DFF40. Biochem. Biophys. Res. Commun. 264, 181–185 (1999).

    Article  CAS  Google Scholar 

  18. Sakahira, H. & Nagata, S. Co-translational folding of caspase-activated DNase with Hsp70, Hsp40 and inhibitor of caspase-activated DNase. J. Biol. Chem. 277, 3364–3370 (2002).

    Article  CAS  Google Scholar 

  19. Zhang, J. et al. Resistance to DNA fragmentation and chromatin condensation in mice lacking the DNA fragmentation factor 45. Proc. Natl. Acad. Sci. USA 95, 12480–12485 (1998).

    Article  CAS  Google Scholar 

  20. McIlroy, D. et al. An auxiliary mode of apoptotic DNA fragmentation provided by phagocytes. Genes Dev. 14, 549–558 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, L.Y., Luo, X. & Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95–99 (2001).

    Article  CAS  Google Scholar 

  22. Parrish, J. et al. Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412, 90–94 (2001).

    Article  CAS  Google Scholar 

  23. van Loo, G. et al. Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differ. 8, 1136–1142 (2001).

    Article  CAS  Google Scholar 

  24. Hanayama, R. et al. Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182–187 (2002).

    Article  CAS  Google Scholar 

  25. Bernardi, G. in The Enzymes (ed. Boyer, P.D.) 271–287 (Academic Press, New York and London, 1971).

    Google Scholar 

  26. Kawane, K. et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292, 1546–1549 (2001).

    Article  CAS  Google Scholar 

  27. Krieser, R.J. et al. Deoxyribonuclease IIa is required during the phagocytic phase of apoptosis and its loss causes lethality. Cell Death Differ. 9, 956–962 (2002).

    Article  CAS  Google Scholar 

  28. Kawane, K. et al. Structure and promoter analysis of murine CAD and ICAD genes. Cell Death Differ. 6, 745–752 (1999).

    Article  CAS  Google Scholar 

  29. Oberhammer, F. et al. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J. 12, 3679–3684 (1993).

    Article  CAS  Google Scholar 

  30. Godfrey, D.I., Kennedy, J., Suda, T. & Zlotnik, A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3CD4CD8 triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150, 4244–4252 (1993).

    CAS  Google Scholar 

  31. Yaegashi, Y., Nielsen, P., Sing, A., Galanos, C. & Freudenberg, M.A. Interferon β, a cofactor in the interferon γ production induced by gram-negative bacteria in mice. J. Exp. Med. 181, 953–960 (1995).

    Article  CAS  Google Scholar 

  32. Su, D.M., Wang, J., Lin, Q., Cooper, M.D. & Watanabe, T. Interferons α/β inhibit IL-7-induced proliferation of CD4 CD8 CD3 CD44+ CD25+ thymocytes, but do not inhibit that of CD4 CD8 CD3 CD44 CD25 thymocytes. Immunology 90, 543–549 (1997).

    Article  CAS  Google Scholar 

  33. Lin, Q., Dong, C. & Cooper, M.D. Impairment of T and B cell development by treatment with a type I interferon. J. Exp. Med. 187, 79–87 (1998).

    Article  CAS  Google Scholar 

  34. Montgomery, R.A. & Dallman, M.J. Semi-quantitative polymerase chain reaction analysis of cytokine and cytokine receptor gene expression during thymic ontogeny. Cytokine 9, 717–726 (1997).

    Article  CAS  Google Scholar 

  35. Arends, M.J., Morris, R.G. & Wyllie, A.H. The role of the endonuclease. Am. J. Pathol. 136, 593–608 (1993).

    Google Scholar 

  36. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S.A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992).

    Article  CAS  Google Scholar 

  37. Staley, K., Blaschke, A. & Chun, J. Apoptotic DNA fragmentation is detected by a semi-quantitative ligation-mediated PCR of blunt DNA ends. Cell Death Differ. 4, 66–75 (1997).

    Article  CAS  Google Scholar 

  38. Peitsch, M.C. et al. Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J. 12, 371–377 (1993).

    Article  CAS  Google Scholar 

  39. Susin, S.A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999).

    Article  CAS  Google Scholar 

  40. Wu, Y.C., Stanfield, G.M. & Horvitz, H.R. NUC-1, a Caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes Dev. 14, 536–548 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mukae, N., Yokoyama, H., Yokokura, T., Sakoyama, Y. & Nagata, S. Activation of the innate immunity in Drosophila by endogenous chromosomal DNA that escaped apoptotic degradation. Genes Dev. 16, 2662–2671 (2002).

    Article  CAS  Google Scholar 

  42. Durrieu, F. et al. Caspase activation is an early event in anthracycline-induced apoptosis and allows detection of apoptotic cells before they are ingested by phagocytes. Exp. Cell Res. 240, 165–175 (1998).

    Article  CAS  Google Scholar 

  43. Binder, D., Fehr, J., Hengartner, H. & Zinkernagel, R.M. Virus-induced transient bone marrow aplasia: major role of interferon-α/β during acute infection with the noncytopathic lymphocytic choriomeningitis virus. J. Exp. Med. 185, 517–530 (1997).

    Article  CAS  Google Scholar 

  44. Doly, J., Civas, A., Navarro, S. & Uze, G. Type I interferons: expression and signalization. Cell Mol. Life Sci. 54, 1109–1121 (1998).

    Article  CAS  Google Scholar 

  45. Krieg, A.M. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709–760 (2002).

    Article  CAS  Google Scholar 

  46. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  Google Scholar 

  47. Bird, A.P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).

    Article  CAS  Google Scholar 

  48. Leadbetter, E.A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  Google Scholar 

  49. Kondoh, G. et al. Easy assessment of ES cell clone potency for chimeric development and germ-line competency by an optimized aggregation method. J. Biochem. Biophys. Methods 39, 137–142 (1999).

    Article  CAS  Google Scholar 

  50. Platt, N., Suzuki, H., Kurihara, Y., Kodama, T. & Gordon, S. Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc. Natl. Acad. Sci. USA 93, 12456–12460 (1996).

    Article  CAS  Google Scholar 

  51. Takeshita, S., Kaji, K. & Kudo, A. Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J. Bone Miner. Res. 15, 1477–1488 (2000).

    Article  CAS  Google Scholar 

  52. Laird, P.W. et al. Simplified mammalian DNA isolation procedure. Nucleic Acids Res. 19, 4293 (1991).

    Article  CAS  Google Scholar 

  53. Sambrook, J. & Russell, D.W. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 2001).

    Google Scholar 

Download references

Acknowledgements

We thank M. Adachi for help in the initial stage of this study; K. Miwa for PCR; A. Kudo for CMG-12 cells; K. Ishihara for the advice on the fetal thymus organ culture; and S. Aoyama and M. Harayama for secretarial assistance. This work was supported in part by Grants-in-Aid from the Ministry of Education, Science, Sports, and Culture in Japan. K.K. is supported by a research fellowship from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigekazu Nagata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawane, K., Fukuyama, H., Yoshida, H. et al. Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nat Immunol 4, 138–144 (2003). https://doi.org/10.1038/ni881

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni881

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing