Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate

Abstract

The evolutionary origin of adaptive immune receptors is not understood below the phylogenetic level of the jawed vertebrates. We describe here a strategy for the selective cloning of cDNAs encoding secreted or transmembrane proteins that uses a bacterial plasmid (Amptrap) with a defective β-lactamase gene. This method requires knowledge of only a single target motif that corresponds to as few as three amino acids; it was validated with major histocompatibility complex genes from a cartilaginous fish. Using this approach, we identified families of genes encoding secreted proteins with two diversified immunoglobulin-like variable (V) domains and a chitin-binding domain in amphioxus, a protochordate. Thus, multigenic families encoding diversified V regions exist in a species lacking an adaptive immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amptrap selection strategy.
Figure 2: Validation of Amptrap cloning based on MHC class II and β2M genes from Raja eglanteria.
Figure 3: Characterization of five families of predicted IgSF proteins from amphioxus.
Figure 4: Diversity of VCBP genes.
Figure 5: Selective expression of VCBP1 in adult amphioxus intestine.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Barclay, A.N. et al. The Leucocyte Antigen FactsBook (Academic Press, San Diego, 1997).

    Google Scholar 

  2. Teichmann, S.A. & Chothia, C. Immunoglobulin superfamily proteins in Caenorhabditis elegans. J. Mol. Biol. 296, 1367–1383 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Flajnik, M.F. & Kasahara, M. Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15, 351–362 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Litman, G.W., Anderson, M.K. & Rast, J.P. Evolution of antigen binding receptors. Annu. Rev. Immunol. 17, 109–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Moore, P.A. et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285, 260–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Ollmann, M. et al. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101, 91–101 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Nagle, D.L. et al. The mahogany protein is a receptor involved in suppression of obesity. Nature 398, 148–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Coyle, A.J. & Gutierrez-Ramos, J.C. The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T cell function. Nature Immunol. 2, 203–209 (2001).

    Article  CAS  Google Scholar 

  9. Rast, J.P. & Litman, G.W. T cell receptor gene homologs are present in the most primitive jawed vertebrates. Proc. Natl. Acad. Sci. USA 91, 9248–9252 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rast, J.P. et al. α, β, γ, and δ T cell antigen receptor genes arose early in vertebrate phylogeny. Immunity 6, 1–11 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Litman, G.W., Hawke, N.A. & Yoder, J.A. Novel immune-type receptor genes. Immunol. Rev. 181, 250–259 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Rast, J.P., Haire, R.N., Litman, R.T., Pross, S. & Litman, G.W. Identification and characterization of T-cell antigen receptor related genes in phylogenetically diverse vertebrate species. Immunogenetics 42, 204–212 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Okamura, K., Ototake, M., Nakanishi, T., Kurosawa, Y. & Hashimoto, K. The most primitive vertebrates with jaws possess highly polymorphic MHC class I genes comparable to those of humans. Immunity 7, 777–790 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Bartl, S. & Weissman, I.L. Isolation and characterization of major histocompatibility complex class IIB genes from the nurse shark. Proc. Natl. Acad. Sci. USA 91, 262–266 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sarwal, M.M., Sontag, J.M., Hoang, L., Brenner, S. & Wilkie, T.M. G protein α subunit multigene family in the Japanese puffer fish Fugu rubripes: PCR from a compact vertebrate genome. Genome Res. 6, 1207–1215 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Hawke, N.A., Strong, S.J., Haire, R.N. & Litman, G.W. Vector for positive selection of in-frame genetic sequences. Biotechniques 23, 619–621 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Chenchik, A. et al. in Gene Cloning and Analysis by RT-PCR (eds. Siebert, P. & Larrick, J.W.) 305–319 (BioTechniques Books, Westborough, MA, 1998).

    Google Scholar 

  18. Jackson, D.G., Hart, D.N., Starling, G. & Bell, J.I. Molecular cloning of a novel member of the immunoglobulin gene superfamily homologous to the polymeric immunoglobulin receptor. Eur. J. Immunol. 22, 1157–1163 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Strong, S.J. et al. A novel multigene family encodes diversified variable regions. Proc. Natl. Acad. Sci. USA 96, 15080–15085 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yoder, J.A. et al. Immune-type receptor genes in zebrafish share genetic and functional properties with genes encoded by the mammalian lymphocyte receptor cluster. Proc. Natl. Acad. Sci. USA 98, 6771–6776 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perrakis, A. et al. Crystal structure of a bacterial chitinase at 2. 3 A resolution. Structure 2, 1169–1180 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Harpaz, Y. & Chothia, C. Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J. Mol. Biol. 238, 528–539 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Pancer, Z., Cooper, E.L. & Muller, W.E. A tunicate (Botryllus schlosseri) cDNA reveals similarity to vertebrate antigen receptors. Immunogenetics 45, 69–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Pancer, Z., Diehl-Seifert, B., Rinkevich, B. & Muller, W.E. A novel tunicate (Botryllus schlosseri) putative C-type lectin features an immunoglobulin domain. DNA Cell Biol. 16, 801–806 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Pancer, Z., Skorokhod, A., Blumbach, B. & Muller, W.E.G. Multiple Ig-like featuring genes divergent within and among individuals of the marine sponge Geodia cydonium. Gene 207, 227–233 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, S.-M., Leonard, P.M., Adema, C.M. & Loker, E.S. Parasite-responsive IgSF members in the snail Biomphalaria glabrata: characterization of novel genes with tandemly arranged IgSF domains and a fibrinogen domain. Immunogenetics 53, 684–694 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Seeger, M.A. & Kaufman, T.C. Characterization of amalgam: a member of the immunoglobulin superfamily from Drosophila. Cell 55, 589–600 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Vasta, G.R., Quesenberry, M.S., Ahmed, H. & O'Leary, N. Lectins from tunicates: structure-function relationships in innate immunity. Adv. Exp. Med. Biol. 484, 275–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Agrawal, A., Eastman, Q.M. & Schatz, D.G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Hiom, K., Melek, M. & Gellert, M. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94, 463–470 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Wright, G.J. et al. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 13, 233–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Destoumieux, D., Muñoz, M., Bulet, P. & Bachere, E. Penaeidins, a family of antimicrobial peptides from a penaeid shrimp (Crustacea, Decapoda). Cell Mol. Life Sci. 57, 1260–1271 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Destoumieux, D. et al. Penaeidins, antimicrobial peptides with chitin-binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. J. Cell Sci. 113, 461–469 (2000).

    CAS  PubMed  Google Scholar 

  34. Kawabata, S. et al. Tachycitin, a small granular component in horseshoe crab hemocytes, is an antimicrobial protein with chitin-binding activity. J. Biochem. 120, 1253–1260 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Iwanaga, S., Kawabata, S. & Muta, T. New types of clotting factors and defense molecules found in horseshoe crab hemolymph: their structures and functions. J. Biochem. 123, 1–15 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Medzhitov, R. & Janeway Jr., C.A. Decoding the patterns of self and nonself by the innate immune system. Science 296, 298–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Laird, D.J., De Tomaso, A.W., Cooper, M.D. & Weissman, I.L. 50 million years of chordate evolution: seeking the origins of adaptive immunity. Proc. Natl. Acad. Sci. USA 97, 6924–6926 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wilkinson, D.G. In Situ Hybridization: A practical approach (Oxford University Press, New York, NY, 1999).

    Google Scholar 

  40. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Pryor for editorial assistance, R. Litman for sequence analysis, C. Andrews, J. Wahle and T. Willis for technical assistance and C. Amemiya for comments about the manuscript. Supported by NIH grant AI23338 (to G. W. L) and the H. Lee Moffitt Cancer Center (J. P. C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary W. Litman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannon, J., Haire, R. & Litman, G. Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate. Nat Immunol 3, 1200–1207 (2002). https://doi.org/10.1038/ni849

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni849

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing