Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains

Abstract

The human genome encodes five nonpolymorphic major histocompatibility complex class I–like glycoproteins, CD1a to CD1e, that present lipid antigens for specific recognition by T lymphocytes. Using single alkyl chain detergents, we developed a protocol to generate recombinant human CD1b-lipid complexes. We present here the crystal structures of CD1b in complex with either phosphatidylinositol or ganglioside GM2 at 2.3 Å and 2.8 Å resolutions, respectively. The antigen-binding groove houses four interlinked hydrophobic channels that are occupied by the alkyl chains of the glycolipid plus two detergent molecules. A distinct exit beneath the α2 helix further contributes to the plasticity of the binding groove. These structures reveal the mechanism by which two alkyl chain lipids bind to CD1b, and how CD1b can adapt to ligands of different alkyl chain length. They also suggest how very long alkyl chains, such as those of mycolic acid, could be fully contained within the binding groove. These results extend the spectrum of potential CD1b ligands by revealing that, in addition to two alkyl chain lipids, mono-alkyl and triple-alkyl chain lipids can be accommodated in the binding groove.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the human CD1b-ligand complex.
Figure 2: Conformation of alkyl chain ligands bound by CD1b.
Figure 3: Differences between CD1b and other CD1 isoforms.
Figure 4: Models for binding of mycolic acid and triacylglycerol to CD1b.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Calabi, F., Jarvis, J.M., Martin, L. & Milstein, C. Two classes of CD1 genes. Eur. J. Immunol. 19, 285–292 (1989).

    Article  CAS  Google Scholar 

  2. Beckman, E.M. et al. Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature 372, 691–694 (1994).

    Article  CAS  Google Scholar 

  3. Beckman, E.M. et al. CD1c restricts responses of mycobacteria-specific T cells. Evidence for antigen presentation by a second member of the human CD1 family. J. Immunol. 157, 2795–2803 (1996).

    CAS  PubMed  Google Scholar 

  4. Porcelli, S. et al. Recognition of cluster of differentiation 1 antigens by human CD4-CD8-cytolytic T lymphocytes. Nature 341, 447–450 (1989).

    Article  CAS  Google Scholar 

  5. Rosat, J.P. et al. CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ αβ T cell pool. J. Immunol. 162, 366–371 (1999).

    CAS  PubMed  Google Scholar 

  6. Shamshiev, A. et al. Self glycolipids as T-cell autoantigens. Eur. J. Immunol. 29, 1667–1675 (1999).

    Article  CAS  Google Scholar 

  7. Moody, D.B. et al. Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 278, 283–286 (1997).

    Article  CAS  Google Scholar 

  8. Moody, D.B. et al. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tubercolosis infection. Nature 404, 884–888 (2000)

    Article  CAS  Google Scholar 

  9. Briken, V., Moody, D.B. & Porcelli, S.A. Diversification of CD1 proteins: sampling the lipid content of different cellular compartments. Semin. Immunol. 12, 517–525 (2000).

    Article  CAS  Google Scholar 

  10. Kang, S.J. & Cresswell, P. Regulation of intracellular trafficking of human CD1d by association with MHC class II structures. EMBO J. 21, 1650–1660 (2002).

    Article  CAS  Google Scholar 

  11. Jayawardena-Wolf, J., Benlagha, K., Chiu, Y.H., Mehr, R. & Bendelac, A. CD1d endosomal trafficking is independently regulated by an intrisic CD1d-encoded tyrosine motif and by the invariant chain. Immunity 15, 897–908 (2001).

    Article  CAS  Google Scholar 

  12. Briken, V., Jackman, R.M., Dasgupta, S., Hoening, S. & Porcelli, S. Intracellular trafficking pathway of newly synthesized CD1b molecules. EMBO J. 21, 825–834 (2002).

    Article  CAS  Google Scholar 

  13. Moody, D.B. et al. Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nature Immunol. 3, 435–442 (2002).

    Article  CAS  Google Scholar 

  14. Zeng, Z. et al. Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. Science 277, 339–345 (1997).

    Article  CAS  Google Scholar 

  15. Castro-Palomino, J.C. et al. Efficient synthesis of ganglioside GM2 for use in GM2 cancer vaccines. Angew. Chem. Int. Ed. Engl. 36, 1998–2001 (1997).

    Article  CAS  Google Scholar 

  16. Madden, D.R., Garboczi, D.N. & Wiley, D.C. The antigenic identity of peptide-MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A2. Cell 75, 693–708 (1993).

    Article  CAS  Google Scholar 

  17. Melian, A. et al. Molecular recognition of human CD1b antigen complexes: evidence for a common pattern of interaction with αβ TCRs. J. Immunol. 165, 4494–4504 (2000).

    Article  CAS  Google Scholar 

  18. Gao, G.F. et al. Crystal structure of the complex between human CD8α and HLA-A2. Nature 387, 630–634 (1997).

    Article  CAS  Google Scholar 

  19. Hopkins, A.L. et al. Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT series reveal conformational changes relevant to the design of potent non-nucleoside inhibitors. J. Med. Chem. 39, 1589–1600 (1996).

    Article  CAS  Google Scholar 

  20. Sacchettini, J.C., Scapin, G., Gopaul, D. & Gordon, J.I. Refinement of the structure of Escherichia coli-derived rat intestinal fatty acid binding protein with bound oleate to 1. 75-A resolution. Correlation with the structures of the apoprotein and the protein with bound palmitate. J. Biol. Chem. 267, 23534–23545 (1992).

    CAS  PubMed  Google Scholar 

  21. Ernst, W.A. et al. Molecular interaction of CD1b with lipoglycan antigens. Immunity 8, 331–340 (1998).

    Article  CAS  Google Scholar 

  22. Naidenko, O.V. et al. Binding and antigen presentation of ceramide-containing glycolipids by soluble mouse and human CD1d molecules. J. Exp. Med. 190, 1069–1080 (1999).

    Article  CAS  Google Scholar 

  23. Niazi, K. et al. The A′ and F′ pockets of human CD1b are both required for optimal presentation of lipid antigens to T cells. J. Immunol. 166, 2562–2570 (2001).

    Article  CAS  Google Scholar 

  24. Brennan, P.J. & Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem. 64, 29–63 (1995).

    Article  CAS  Google Scholar 

  25. Grant, E.P. et al. Fine specificity of TCR complementarity-determining region residues and lipid antigen hydrophilic moieties in the recognition of a CD1-lipid complex. J. Immunol. 168, 3933–3940 (2002).

    Article  CAS  Google Scholar 

  26. Hokanson, J.E. & Austin, M.A. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J. Cardiovasc. Risk 3, 213–219 (1996).

    Article  CAS  Google Scholar 

  27. Assmann, G., Schulte, H. & von Eckardstein, A. Hypertriglyceridemia and elevated lipoprotein(a) are risk factors for major coronary events in middle-aged men. Am. J. Cardiol. 77, 1179–1184 (1996).

    Article  CAS  Google Scholar 

  28. Hansson, G.K., Holm, J. & Jonasson, L. Detection of activated T lymphocytes in the human atherosclerotic plaque. Am. J. Pathol. 135, 169–175 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Stemme, S., Holm, J. & Hansson, G.K. T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and the integrin VLA-1. Arterioscler. Thromb. 12, 206–211 (1992).

    Article  CAS  Google Scholar 

  30. Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl. Acad. Sci. USA 92, 3893–3897 (1995).

    Article  CAS  Google Scholar 

  31. Wu, R., Giscombe, R., Holm, G. & Lefvert, A.K. Induction of human cytotoxic T lymphocytes by oxidized low density lipoproteins. Scand. J. Immunol. 43, 381–384 (1996).

    Article  CAS  Google Scholar 

  32. Melian, A., Geng, Y.J., Sukhova, G.K., Libby, P. & Porcelli, S.A. CD1 expression in human atherosclerosis. A potential mechanism for T cell activation by foam cells. Am. J. Pathol. 155, 775–786 (1999).

    Article  CAS  Google Scholar 

  33. Harlos, K. Micro-bridges for sitting-drop crystallizations. J. Appl. Cryst. 25, 536–538 (1992).

    Article  Google Scholar 

  34. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Meth. Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  35. Navaza, J. & Saludjian, P. AMoRe: An automated molecular replacement program package. Meth. Enzymol. A 276, 581–594 (1997).

    Article  CAS  Google Scholar 

  36. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  37. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–1119 (1991).

    Article  Google Scholar 

  38. Pascher, I. The different conformations of the glycerol region of crystalline acylglycerols. Curr. Opin. Struct. Biol. 6, 439–448 (1996).

    Article  CAS  Google Scholar 

  39. van Aalten, D. M. et al. PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J. Comput. Aided Mol. Des. 10, 255–262 (1996).

    Article  CAS  Google Scholar 

  40. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  41. Esnouf, R.M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  Google Scholar 

  42. Merrit, E.A. & Murphy, M.E.P. Raster3D version 2.0: a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Stuart for critical reading of the manuscript. Funded by the Cancer Research Institute, Cancer Research UK, the Medical Research Council (UK), the Ludwig Institute for Cancer Research and the Swiss National Science Foundation, Kurt und Senta Herrmann Stiftung, Roche Foundation and Novartis Foundation (to S. D. G.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephan D. Gadola, E. Yvonne Jones or Vincenzo Cerundolo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadola, S., Zaccai, N., Harlos, K. et al. Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains. Nat Immunol 3, 721–726 (2002). https://doi.org/10.1038/ni821

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni821

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing