Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human epithelial cells trigger dendritic cell–mediated allergic inflammation by producing TSLP

Abstract

Whether epithelial cells play a role in triggering the immune cascade leading to T helper 2 (TH2)-type allergic inflammation is not known. We show here that human thymic stromal lymphopoietin (TSLP) potently activated CD11c+ dendritic cells (DCs) and induced production of the TH2-attracting chemokines TARC (thymus and activation-regulated chemokine; also known as CCL17) and MDC (macrophage-derived chemokine; CCL22). TSLP-activated DCs primed naïve TH cells to produce the proallergic cytokines interleukin 4 (IL-4), IL-5, IL-13 and tumor necrosis factor-α, while down-regulating IL-10 and interferon-γ. TSLP was highly expressed by epithelial cells, especially keratinocytes from patients with atopic dermatitis. TSLP expression was associated with Langerhans cell migration and activation in situ. These findings shed new light on the function of human TSLP and the role played by epithelial cells and DCs in initiating allergic inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TSLP potently activates CD11c+ DCs and maintains their survival.
Figure 2: Naïve CD4+ T cell proliferation and expansion with DCs activated by TSLP and other activators.
Figure 3: Cytokine and chemokine production by DCs activated with TSLP.
Figure 4: Cytokine production by naïve CD4+ T cells primed for 6 days with TSLP-DCs.
Figure 5: Quantification of TSLP mRNA levels in different human hematopoietic and stromal cell types.
Figure 6: Expression of TSLP by crypt epithelial cells of human inflamed tonsils.
Figure 7: Sporadic expression of TSLP by squamous epithelial cells of inflamed tonsils is associated with the presence of activated DC-LAMP+ DCs.
Figure 8: Expression of TSLP in atopic dermatitis.
Figure 9: TSLP expression in atopic dermatitis associates with Langerhans cell migration and activation.

Similar content being viewed by others

References

  1. Kay, A.B. Allergy and allergic diseases. First of two parts. N. Engl. J. Med. 344, 30–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Mosmann, T.R. & Coffman, R.L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Abbas, A.K., Murphy, K.M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Constant, S.L. & Bottomly, K. Induction of TH1 and TH2 CD4+ T cell responses: the alternative approaches. Annu. Rev. Immunol. 15, 297–322 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Renauld, J.C. New insights into the role of cytokines in asthma. J. Clin. Pathol. 54, 577–589 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Holgate, S.T. Science, medicine, and the future. Allergic disorders. Brit. Med. J. 320, 231–234 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Busse, W.W. & Lemanske, R.F. Jr. Asthma. N. Engl. J. Med. 344, 350–362 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Holt, P.G. Macrophage: dendritic cell interaction in regulation of the IgE response in asthma. Clin. Exp. Allergy 23, 4–6 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Lambrecht, B.N. et al. Myeloid dendritic cells induce TH2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J. Clin. Invest. 106, 551–559 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Semper, A.E., Gudin, A.M., Holloway, J.A. & Holgate, S.T. in Dendritic Cells (eds. Lotze, M. T. & Thomson, A. W.) 435–456 (Academic Press, San Diego, CA,1999).

    Google Scholar 

  12. Stingl, G. in Immunological and Pharmacological Aspects of Atopic and Contact Eczema (ed. Czernielewski, J .M.) 1–9 (Karger, Basel, 1991).

    Google Scholar 

  13. Sims, J.E. et al. Molecular cloning and biological characterization of a novel murine lymphoid growth factor. J. Exp. Med. 192, 671–680 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tonozuka, Y. et al. Molecular cloning of a human novel type I cytokine receptor related to δ/TSLPR. Cytogenet. Cell Genet. 93, 23–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Pandey, A. et al. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nature Immunol. 1, 59–64 (2000).

    Article  CAS  Google Scholar 

  16. Park, L.S. et al. Cloning of the murine thymic stromal lymphopoietin (TSLP) receptor: Formation of a functional heteromeric complex requires interleukin 7 receptor. J. Exp. Med. 192, 659–670 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reche, P.A. et al. Human thymic stromal lymphopoietin preferentially stimulates myeloid cells. J. Immunol. 167, 336–343 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Ray, R.J., Furlonger, C., Williams, D.E. & Paige, C.J. Characterization of thymic stromal–derived lymphopoietin (TSLP) in murine B cell development in vitro. Eur. J. Immunol. 26, 10–16 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Levin, S.D. et al. Thymic stromal lymphopoietin: a cytokine that promotes the development of IgM+ B cells in vitro and signals via a novel mechanism. J. Immunol. 162, 677–683 (1999).

    CAS  PubMed  Google Scholar 

  20. Koch, F. et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J. Exp. Med. 184, 741–746 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Cella, M. et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 184, 747–752 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Pulendran, B. et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl. Acad. Sci. USA 96, 1036–1041 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maldonado-Lopez, R. et al. CD8α+ and CD8α subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189, 587–592 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rissoan, M.C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Homey, B. & Zlotnik, A. Chemokines in allergy. Curr. Opin. Immunol. 11, 626–634 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Moore, K.W., de Waal Malefyt, R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8, 275–283 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Vestergaard, C. et al. A TH2 chemokine, TARC, produced by keratinocytes may recruit CLA+CCR4+ lymphocytes into lesional atopic dermatitis skin. J. Invest. Dermatol. 115, 640–646 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Imai, T. et al. Selective recruitment of CCR4-bearing TH2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int. Immunol. 11, 81–88 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Andrew, D.P. et al. C-C chemokine receptor 4 expression defines a major subset of circulating nonintestinal memory T cells of both TH1 and TH2 potential. J. Immunol. 166, 103–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. de Saint-Vis, B. et al. A novel lysosome-associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment. Immunity 9, 325–336 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Hammad, H. et al. TH2 polarization by Derp 1–pulsed monocyte-derived dendritic cells is due to the allergic status of the donors. Blood 98, 1135–1141 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. McWilliam, A.S. et al. Dendritic cells are recruited into the airway epithelium during the inflammatory response to a broad spectrum of stimuli. J. Exp. Med. 184, 2429–2432 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Novak, N., Haberstok, J., Geiger, E. & Bieber, T. Dendritic cells in allergy. Allergy 54, 792–803 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Tunon-De-Lara, J.M. et al. Dendritic cells in normal and asthmatic airways: expression of the α subunit of the high affinity immunoglobulin E receptor (Fcε RI-α). Clin. Exp. Allergy 26, 648–655 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Holt, P.G., Macaubas, C., Cooper, D., Nelson, D.J. & McWilliam, A.S. Th-1/Th-2 switch regulation in immune responses to inhaled antigens. Role of dendritic cells in the aetiology of allergic respiratory disease. Adv. Exp. Med. Biol. 417, 301–306 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Homey B. et al. CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nature Med. 8, 157–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Romagnani S. T-cell responses in allergy and asthma. Curr. Opin. Allergy. Clin. Immunol. 1, 73–78 (2002).

    Article  Google Scholar 

  39. Robinson, D.S. et al. Increased interleukin-10 messenger RNA expression in atopic allergy and asthma. Am. J. Respir. Cell. Mol. Biol. 14, 113–117 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Borish, L. et al. Interleukin-10 regulation in normal subjects and patients with asthma. J. Allergy. Clin. Immunol. 97, 1288–1296 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Akbari, O., DeKruyff, R.H. & Umetsu, D.T. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nature Immunol. 2, 725–731 (2001).

    Article  CAS  Google Scholar 

  42. Zuany-Amorim, C. et al. Interleukin-10 inhibits antigen-induced cellular recruitment into the airways of sensitized mice. J. Clin. Invest. 95, 2644–2651 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Siegal, F.P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Lanier, J.-Z. Chen and J. Banchereau for critical reading of the manuscript and M. Andonian for help with graphics. DNAX Research Institute is supported by Schering-Plough.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jun Liu.

Ethics declarations

Competing interests

DNAX Research Inc is a wholly owned subsidiary of the Schering Corporation, Kenilworth, NJ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soumelis, V., Reche, P., Kanzler, H. et al. Human epithelial cells trigger dendritic cell–mediated allergic inflammation by producing TSLP. Nat Immunol 3, 673–680 (2002). https://doi.org/10.1038/ni805

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni805

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing