Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Down-regulation of diabetogenic CD4+ T cells by a soluble dimeric peptide–MHC class II chimera

Abstract

Type 1 diabetes is an organ-specific autoimmune disease that is mediated by autoreactive T cells. We show here that administration of a soluble dimeric peptide–major histocompatibility complex (pMHC) class II chimera (DEF) to prediabetic double-transgenic mice prevents the onset of disease or, in animals that are already diabetic, restores normoglycemia. The antidiabetogenic effects of DEF rely on the induction of anergy in splenic autoreactive CD4+ T cells via alteration of early T cell receptor signaling and stimulation of interleukin 10–secreting T regulatory type 1 cells in the pancreas. Soluble dimeric pMHC class II may be useful in the development of immunospecific therapies for type 1 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DEF protects dTg mice against diabetes.
Figure 2: DEF induces anergy in splenic TCR-Tg T cells.
Figure 3: Inhibition of ZAP-70 phosphorylation in DEF-treated dTg mice.
Figure 4: DEF does not affect the development of TCR-Tg thymic precursors.
Figure 5: Assessment of diabetogenicity for DEF-anergized T cells.
Figure 6: DEF stimulates regulatory IL-10–secreting CD4+ T cells in the pancreas.
Figure 7: DEF up-regulates the expression of CD62L on pancreatic TCR-Tg T cells and favors migration to the peripheral lymphoid organs.

Similar content being viewed by others

References

  1. Buzzetti, R., Quattrocchi, C. C. & Nistico, L. Dissecting the genetics of Type 1 Diabetes: relevance for the familial clustering and differences in incidence. Diabetes Metab. Rev. 14, 111–128 (1998).

    Article  CAS  Google Scholar 

  2. Nepon, G. T. & Erlich, H. MHC class-II molecules and autoimmunity. Annu. Rev. Immunol. 9, 493–525 (1991).

    Article  Google Scholar 

  3. Miyakazi, A. et al. Predominance of T lymphocytes in pancreatic islets and spleen of prediabetic non-obese diabetic (NOD) mice: a longitudinal study. Clin. Exp. Immunol. 60, 622–625 (1985).

    Google Scholar 

  4. Like, A. A., Kislaukis, E., Williams, R. R. & Rossini, A. A. Neonatal thymectomy prevents spontaneous diabetes in the BB/W rat. Science 216, 644–646 (1982).

    Article  CAS  Google Scholar 

  5. Herold, K. C., Montag, A. G. & Buckingham, F. Induction of tolerance to autoimmune diabetes with islet antigens. J. Exp. Med. 176, 1107–1114 (1992).

    Article  CAS  Google Scholar 

  6. Serreze, D. V., Leiter, E. H., Worthen, S. M. & Shultz, L. D. NOD marrow stem cells adoptively transfer diabetes to resistant (NOD X NON)F1 mice. Diabetes 37, 252–255 (1988).

    Article  CAS  Google Scholar 

  7. Wicker, L. S., Miller, B. J. & Muller, Y. Transfer of autoimmune diabetes mellitus with splenocytes from nonobese diabetic (NOD) mice. Diabetes 35, 855–860 (1986).

    Article  CAS  Google Scholar 

  8. Peterson, J. D., Pike, B., McDuffie, M. & Haskins, K. Islet-specific T cell clones transfer diabetes to nonobese diabetic (NOD) F1 mice. J. Immunol. 153, 2800–2806 (1994).

    CAS  PubMed  Google Scholar 

  9. Zekzer, D. et al. Inhibition of diabetes by an insulin-reactive CD4 T-cell clone in the nonobese diabetic mouse. Diabetes 46, 1124–1132 (1997).

    Article  CAS  Google Scholar 

  10. Bowman, M. A., Leiter, E. H. & Atkinson, M. A. Prevention of diabetes in the NOD mouse: implications for therapeutic intervention in human disease. Immunol. Today 15, 115–120 (1994).

    Article  CAS  Google Scholar 

  11. Verdaguer, J. et al. Spontaneous autoimmune diabetes in monoclonal T cell nonobese diabetic mice. J. Exp. Med. 186, 1663–1676 (1997).

    Article  CAS  Google Scholar 

  12. Bach, J. F. Insulin dependent diabetes as an autoimmune disease. Endocr. Rev. 15, 516–542 (1994).

    Article  CAS  Google Scholar 

  13. Cameron, M. J. et al. IL-4 prevents insulitis and insulin-dependent diabetes mellitus in nonobese diabetic mice by potentiation of regulatory T helper-2 cell function. J. Immunol. 159, 4686–4692 (1997).

    CAS  PubMed  Google Scholar 

  14. Nitta, Y. et al. Systemic delivery of interleukin 10 by intramuscular injection of expression plasmid DNA prevents autoimmune diabetes in nonobese diabetic mice. Hum. Gene Ther. 9, 1701–1707 (1998).

    Article  CAS  Google Scholar 

  15. Nicoletti, F. et al. Early prophylaxis with recombinant human interleukin-11 prevents spontaneous diabetes in NOD mice. Diabetes 48, 2333–2339 (1999).

    Article  CAS  Google Scholar 

  16. Zaccone, P. et al. Interleukin-13 prevents autoimmune diabetes in NOD mice. Diabetes 48, 1522–1528 (1999).

    Article  CAS  Google Scholar 

  17. Piccirillo, C. A., Chang, Y. & Prud' homme, G. J. TGF-β1 somatic gene therapy prevents autoimmune disease in nonobese diabetic mice. J. Immunol. 161, 3950–3956 (1998).

    CAS  PubMed  Google Scholar 

  18. Yang, X. D. et al. Effect of tumor necrosis factor α on insulin-dependent diabetes mellitus in NOD mice. I. The early development of autoimmunity and the diabetogenic process. J. Exp. Med. 180, 995–1004 (1994).

    Article  CAS  Google Scholar 

  19. Herold, K. C. et al. Prevention of autoimmune diabetes with nonactivating anti-CD3 monoclonal antibody. Diabetes 41, 457–464 (1992).

    Article  Google Scholar 

  20. Wang, Y., Hao, L., Gill, R. G. & Lafferty, K. J. Autoimmune diabetes in NOD mouse is L3T4 T-lymphocyte dependent. Diabetes 36, 535–538 (1987).

    Article  CAS  Google Scholar 

  21. Shizuku, J. A., Taylor-Edwards, C., Banks, B. A., Gregory, A. K. & Fathman, C. G. Immunotherapy of the nonobese mouse: Treatment with an antibody to T-helper lymphocytes. Science 240, 659–662 (1988).

    Article  Google Scholar 

  22. Kuttler, B., Rosing, K., Lehmann, M., Brock, J. & Hahn, H. J. Prevention of autoimmune but not allogeneic destruction of grafted islets by different therapeutic strategies. J. Mol. Med. 77, 226–229 (1999).

    Article  CAS  Google Scholar 

  23. Balasa, B. et al. CD40 ligand-CD40 interactions are necessary for the initiation of insulitis and diabetes in nonobese diabetic mice. J. Immunol. 159, 4620–4627 (1997).

    CAS  PubMed  Google Scholar 

  24. Lenschow, D. J. et al. Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse. J. Exp. Med. 181, 1145–1155 (1995).

    Article  CAS  Google Scholar 

  25. Daniel, D. & Wegmann, D. R. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B9-23. Proc. Natl Acad. Sci. USA 93, 956–960 (1996).

    Article  CAS  Google Scholar 

  26. Tian, J. et al. Nasal administration of glutamate decarboxylase (GAD65) peptides induces TH2 responses and prevents murine insulin-dependent diabetes mellitus. J. Exp. Med. 183, 1561–1567 (1996).

    Article  CAS  Google Scholar 

  27. Tian, R. et al. Modulating autoimmune responses to GAD inhibits disease progression and prolongs graft survival in diabetes-prone mice. Nature Med. 2, 1384–1353 (1996).

    Article  Google Scholar 

  28. Maron, R., Melican, N. S. & Weiner, H. L. Regulatory TH2-type T cell lines against insulin and GAD peptides derived from orally- and nasally-treated NOD mice suppress diabetes. J. Autoimmun. 12, 251–258 (1999).

    Article  CAS  Google Scholar 

  29. Tisch, T., Wang, B. & Serreze, D. V. Induction of glutamic acid decarboxylase 65-specific TH2 cells and suppression of autoimmune diabetes at late stages of disease is epitope dependent. J. Immunol. 163, 1178–1187 (1999).

    CAS  PubMed  Google Scholar 

  30. Elias, D. et al. Vaccination against autoimmune mouse diabetes in young NOD mice with a T-cell epitope of the human 65-kDa heat shock protein. Proc. Natl Acad. Sci. USA 88, 3088–3091 (1991).

    Article  CAS  Google Scholar 

  31. Bockova, J., Elias, D. & Cohen, I. R. Treatment of NOD diabetes with a novel peptide of the hsp60 molecule induces TH2-type antibodies. J. Autoimmun. 10, 323–329 (1997).

    Article  CAS  Google Scholar 

  32. Petersen, J. S. et al. Treatment with GAD65 or BSA does not protect against diabetes in BB rats. Autoimmunity 25, 129–138 (1997).

    Article  CAS  Google Scholar 

  33. Funda, D. P., Hartoft-Nielsen, M. L. Kaas, A. & Buschard, K. Effect of intrathymic administration of mycobacterial heat shock protein 65 and peptide p277 on the development of diabetes in NOD mice: caution required in vaccination studies. APMIS 106, 1009–1016 (1998).

    Article  CAS  Google Scholar 

  34. Ishioka, G. Y. et al. Failure to demonstrate ling-lived MHC saturation both in vitro and in vivo. Implications for therapeutic potential of MHC-blocking peptides. J. Immunol. 152, 4310–4319 (1994).

    CAS  PubMed  Google Scholar 

  35. Casares, S., Bot, A., Brumeanu, T.-D. & Bona, C. A. Foreign peptides expressed in engineered chimeric self molecules. Biotech. Genet. Engineer. Rev. 15, 159–198 (1998).

    Article  CAS  Google Scholar 

  36. Casares, S., Bona, C. A. & Brumeanu, T.-D. Engineering and characterization of a murine MHC-immunoglobulin chimera expressing an immunodominant CD4 T viral epitope. Protein Engineer. 10, 1295–1301 (1997).

    Article  CAS  Google Scholar 

  37. Brumeanu, T. D., Bona, C. A. & Casares, S. T cell tolerance and autoimmune diabetes. Int. Rev. Immunol. 20, 301–323 (2001).

    Article  CAS  Google Scholar 

  38. Casares, S., Bona, C. A. & Brumeanu, T. D. Enzymatically mediated engineering of multivalent MHC class II-peptide chimeras. Protein Engineer. 14, 195–200 (2001).

    Article  CAS  Google Scholar 

  39. Casares, S. et al. Antigen specific signaling by a soluble dimeric peptide-MHC class II-Fc chimera leading to TH2 differentiation. J. Exp. Med. 190, 543–553 (1999).

    Article  CAS  Google Scholar 

  40. Hamad, A. R. et al. Potent T cell activation with dimeric peptide-major histocompatibility complex class II ligand: the role of CD4 coreceptor. J. Exp. Med. 188, 1633–1640 (1998).

    Article  CAS  Google Scholar 

  41. Appel, H., Gauthier, L., Pyrdol, J. & Wucherpfennig, K. W. Kinetic of T cell receptor binding by bivalent HLA-DR/peptide complexes that activate antigen-specific human T cells. J. Biol. Chem. 275, 312–321 (2000).

    Article  CAS  Google Scholar 

  42. Appel, H., Seth, N. P., Gauthier, L. & Wucherpfennig, K. W. Anergy induction by dimeric TCR ligands. J. Immunol. 166, 5279–5285 (2001).

    Article  CAS  Google Scholar 

  43. Radu, D., Brumeanu, T.-D., McEvoy, R. C., Bona, C. A. & Casares, S. Escape from natural self-tolerance leads to neonatal insulin-dependent diabetes mellitus. Autoimmunity 30, 199–207 (1999).

    Article  CAS  Google Scholar 

  44. Sarukhan, A. et al. Changes in function of antigen-specific lymphocytes correlating with progression towards diabetes in a transgenic model. EMBO J. 17, 71–80 (1998).

    Article  CAS  Google Scholar 

  45. Scott, B. et al. A role for non-MHC genetic polymorphism in susceptibility to spontaneous autoimmunity. Immunity 1, 73–83 (1994).

    Article  CAS  Google Scholar 

  46. Lo, D. et al. Peripheral tolerance to an islet cell-specific hemagglutinin transgene affects both CD4+ and CD8+ T cells. Eur. J. Immunol. 22, 1013–1022 (1992).

    Article  CAS  Google Scholar 

  47. Bot, A., Casares, S., Bot, S., von Boehmer, H. & Bona, C. A. Cellular mechanisms involved in protection against influenza virus infection in transgenic mice expressing a TCR specific for class-II hemagglutinin peptide in CD4+ and CD8+ T cells. J. Immunol. 160, 4500–4507 (1998).

    CAS  PubMed  Google Scholar 

  48. Sarukhan, A., Garcia, C., Lanoue, A. & von Boehmer, H. Allelic inclusion of T cell receptor alpha genes poses an autoimmune hazard due to low-level expression of autospecific receptors. Immunity 6, 563–570 (1998).

    Article  Google Scholar 

  49. Levings, M. K. & Roncarolo, M. G. T-regulatory 1 cells: a novel subset of CD4 T cells with immunomodulatory properties. J. Allergy Clin. Immunol. 106, 109–112 (2000).

    Article  Google Scholar 

  50. Rabinovitch, A. An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Diabetes Metab. Rev. 14, 129–151 (1998).

    Article  CAS  Google Scholar 

  51. Ravetch, J. V. & Bolland, S. IgG Fc receptors. Ann. Rev. Immunol. 19, 275–290 (2001).

    Article  CAS  Google Scholar 

  52. Weil, R. & Veillette, A. Signal transduction by the lymphocyte-specific tyrosine protein kinase p56lck. Curr. Top. Microbiol. Immunol. 205, 63–87 (1996).

    CAS  PubMed  Google Scholar 

  53. La Face, D. M. et al. Differential T cell signaling induced by antagonist peptide-MHC complexes and the associated phenotypic responses. J. Immunol. 158, 2057–2064 (1997).

    CAS  PubMed  Google Scholar 

  54. Faith, A. et al. An altered peptide ligand inhibits TH2 cytokine synthesis by abrogating TCR signaling. J. Immunol. 162, 1836–1842 (1999).

    CAS  PubMed  Google Scholar 

  55. Migita, K. et al. Defective TCR-mediated signaling in anergic T cells. J. Immunol. 155, 5083–5087 (1995).

    CAS  PubMed  Google Scholar 

  56. Madrenas, J., Chau, L. A., Smith, J., Bluestone, J. A. & Germain, R. N. The efficiency of CD4 recruitment to ligand-engaged TCR controls the agonist/partial agonist properties of peptide-MHC molecule ligands. J. Exp. Med. 185, 219–229 (1997).

    Article  CAS  Google Scholar 

  57. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article  CAS  Google Scholar 

  58. Frey, M. et al. Differential expression and function of L-selectin on CD56bright and CD56dim natural killer cell subsets. J. Immunol, 161, 400–408 (1998).

    CAS  Google Scholar 

  59. Bruunsgaard, H., Pedersen, A. N., Schroll, M., Skinhoj, P. & Pedersen, B. K. Proliferative responses of blood mononuclear cells (PBMC) in a cohort of elderly humans: role of lymphocyte phenotype and cytokine production. Clin. Exp. Immunol. 119, 433–440 (2000).

    Article  CAS  Google Scholar 

  60. Lepault, F. & Gagnerault, M. C. Characterization of peripheral regulatory CD4 T cells that prevent diabetes onset in nonobese diabetic mice. J. Immunol, 164, 240–247 (2000).

    Article  CAS  Google Scholar 

  61. Seddon, B., Saoudi, A., Nicholson, M. & Mason, D. CD4+CD8 thymocytes that express L-selectin protect rats from diabetes upon adoptive transfer. Eur. J. Immunol. 26, 2702–2708 (1996).

    Article  CAS  Google Scholar 

  62. Alleva, D. G. et al. A disease-associated cellular immune response in type 1 diabetics to an immunodominant epitope of insulin. J. Clin. Invest. 107, 173–180 (2001).

    Article  CAS  Google Scholar 

  63. Wicker, L. S. et al. Naturally processed T cell epitopes from human glutamic acid decarboxylase identified using mice transgenic for the type 1 diabetes-associated human MHC class II allele DRB1*0401. J. Clin. Invest. 98, 2597–2603 (1996).

    Article  CAS  Google Scholar 

  64. Endl, J. et al. Identification of naturally processed T cells epitopes from glutamic acid decarboxylase presented in the context of HLA-DR alleles by T lymphocytes of recent onset IDDM patients. J. Clin. Invest. 99, 2405–2415 (1997).

    Article  CAS  Google Scholar 

  65. Patel, S. D. et al. Identification of immunodominant T cell epitopes of human glutamic acid decarboxylase 65 by using HLA–DR(α1*0101,β1*0401) transgenic mice. Proc. Natl Acad. Sci. USA 94, 8082–8087 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Miller for helpful discussions. Supported by grants from the Juvenile Diabetes Foundation International, Alexander & Alexandrine L. Sinsheimer Foundation and from the National Institutes of Health (grant 1R55DK55744 to S. C. and grants 1R01DK061927 and 1R21DK61326 to T.-D. B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Casares.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casares, S., Hurtado, A., McEvoy, R. et al. Down-regulation of diabetogenic CD4+ T cells by a soluble dimeric peptide–MHC class II chimera. Nat Immunol 3, 383–391 (2002). https://doi.org/10.1038/ni770

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni770

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing