Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutation of Tec family kinases alters T helper cell differentiation

Abstract

The Tec kinases Rlk and Itk are critical for full T cell receptor (TCR)-induced activation of phospholipase C-γ and mitogen-activated protein kinase. We show here that the mutation of Rlk and Itk impaired activation of the transcription factors NFAT and AP-1 and production of both T helper type 1 (TH1) and TH2 cytokines. Consistent with these biochemical defects, Itk−/− mice did not generate effective TH2 responses when challenged with Schistosoma mansoni eggs. Paradoxically, the more severely impaired Rlk−/−Itk−/− mice were able to mount a TH2 response and produced TH2 cytokines in response to this challenge. In addition, Rlk−/−Itk−/− cells showed impaired TCR-induced repression of the TH2-inducing transcription factor GATA-3, suggesting a potential mechanism for TH2 development in these hyporesponsive cells. Thus, mutations that affect Tec kinases lead to complex alterations in CD4+ TH cell differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Decreased activation of NFATc and NFATp in Rlk−/−Itk−/− T lymphocytes.
Figure 2: Decreased TCR-mediated responses in CD4+ Rlk−/−Itk−/− T cells.
Figure 3: Increased IgG1 and IgE in Rlk−/−Itk−/− and Itk−/− mice.
Figure 4: Altered responses to the TH2 polarizing agent S. mansoni.
Figure 5: Itk−/− and Rlk−/−Itk−/− CD4+ T cells polarize in culture but have decreased cytokine production.
Figure 6: Impaired TCR-induced GATA-3 repression in Rlk−/−Itk−/− cells.

Similar content being viewed by others

References

  1. Abbas, A., Murphy, K. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  3. Constant, S. L. & Bottomly, K. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu. Rev. Immunol. 15, 297–322 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Leitenberg, D. & Bottomly, K. Regulation of naive T cell differentiation by varying the potency of TCR signal transduction. Semin. Immunol. 11, 283–292 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Bancroft, A. J., Else, K. J. & Grencis, R. K. Low-level infection with Trichuris muris significantly affects the polarization of the CD4 response. Eur. J. Immunol. 24, 3113–3118 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Bretscher, P. A., Wei, G., Menon, J. N. & Bielefeldt-Ohmann, H. Establishment of stable, cell-mediated immunity that makes "susceptible" mice resistant to Leishmania major. Science 257, 539–542 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Constant, S., Pfeiffer, C., Woodard, A., Pasqualini, T. & Bottomly, K. Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J. Exp. Med. 182, 1591–1596 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Pfeiffer, C. et al. Altered peptide ligands can control CD4 T lymphocyte differentiation in vivo. J. Exp. Med. 181, 1569–1574 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Rao, A., Luo, C. & Hogan, P. G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Ranger, A. M. et al. Delayed lymphoid repopulation with defects in IL-4-driven responses produced by inactivation of NF-ATc. Immunity 8, 125–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Yoshida, H. et al. The transcription factor NF-ATc1 regulates lymphocyte proliferation and Th2 cytokine production. Immunity 8, 115–124 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Ranger, A. M., Oukka, M., Rengarajan, J. & Glimcher, L. H. Inhibitory function of two NFAT family members in lymphoid homeostasis and Th2 development. Immunity 9, 627–635 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Rengarajan, J. et al. Sequential involvement of NFAT and Egr transcription factors in FasL regulation. Immunity 12, 293–300 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Xanthoudakis, S. et al. An enhanced immune response in mice lacking the transcription factor NFAT1. Science 272, 892–895 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Peng, S. L., Gerth, A. J., Ranger, A. M. & Glimcher, L. H. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 14, 13–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Li, B., Tournier, C., Davis, R. J. & Flavell, R. A. Regulation of IL-4 expression by the transcription factor JunB during T helper cell differentiation. EMBO J. 18, 420–432 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang, D. H., Cohn, L., Ray, P., Bottomly, K. & Ray, A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J. Biol. Chem. 272, 21597–21603 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Liao, X. C. & Littman, D. R. Altered T cell receptor signaling and disrupted T cell development in mice lacking Itk. Immunity 3, 757–769 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, K. Q., Bunnell, S. C., Gurniak, C. B. & Berg, L. J. T cell receptor-initiated calcium release is uncoupled from capacitative calcium entry in Itk-deficient T cells. J. Exp. Med. 187, 1721–1727 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schaeffer, E. M. et al. Requirement for Tec kinases Rlk and Itk in T cell receptor signaling and immunity. Science 284, 638–641 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Fowell, D. J. et al. Impaired NFATc translocation and failure of Th2 development in Itk- deficient CD4+ T cells. Immunity 11, 399–409 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Coffman, R. L. & Mosmann, T. R. Isotype regulation by helper T cells and lymphokines. Monogr. Allergy 24, 96–103 (1988).

    CAS  PubMed  Google Scholar 

  25. Stevens, T. L. et al. Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells. Nature 334, 255–258 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Finkelman, F. D. et al. Lymphokine control of in vivo immunoglobulin isotype selection. Annu. Rev. Immunol. 8, 303–333 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Wynn, T. A. et al. Analysis of cytokine mRNA expression during primary granuloma formation induced by eggs of Schistosoma mansoni. J. Immunol. 151, 1430–1440 (1993).

    CAS  PubMed  Google Scholar 

  28. Lee, H. J. et al. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J. Exp. Med. 192, 105–115 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ouyang, W. et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9, 745–755 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Hu, Q. et al. Identification of Rlk, a novel protein tyrosine kinase with predominant expression in the T cell lineage. J. Biol. Chem. 270, 1928–1934 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Kashiwakura, J. et al. Txk, a nonreceptor tyrosine kinase of the Tec family, is expressed in T helper type 1 cells and regulates interferon γ production in human T lymphocytes. J. Exp. Med. 190, 1147–1154 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brown, D. R. et al. Limited role of CD28-mediated signals in T helper subset differentiation. J. Exp. Med. 184, 803–810 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Brown, D. R., Moskowitz, N. H., Killeen, N. & Reiner, S. L. A role for CD4 in peripheral T cell differentiation. J. Exp. Med. 186, 101–107 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamashita, M. et al. T cell receptor-induced calcineurin activation regulates T helper type 2 cell development by modifying the interleukin 4 receptor signaling complex. J. Exp. Med. 191, 1869–1879 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Blander, J. M., Sant'Angelo, D. B., Bottomly, K. & Janeway, C. A. Jr Alteration at a single amino acid residue in the T cell receptor α chain complementarity determining region 2 changes the differentiation of naive CD4 T cells in response to antigen from T helper cell type 1 (Th1) to Th2. J. Exp. Med. 191, 2065–2074 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Foucras, G., Gapin, L., Coureau, C., Kanellopoulos, J. M. & Guery, J. C. Interleukin 4-producing CD4 T cells arise from different precursors depending on the conditions of antigen exposure in vivo. J. Exp. Med. 191, 683–694 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hosken, N. A., Shibuya, K., Heath, A. W., Murphy, K. M. & O'Garra, A. The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-α β-transgenic model. J. Exp. Med. 182, 1579–1584 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Smith, J. A., Tang, Q. & Bluestone, J. A. Partial TCR signals delivered by FcR-nonbinding anti-CD3 monoclonal antibodies differentially regulate individual Th subsets. J. Immunol. 160, 4841–4849 (1998).

    CAS  PubMed  Google Scholar 

  39. Grakoui, A., Donermeyer, D. L., Kanagawa, O., Murphy, K. M. & Allen, P. M. TCR-independent pathways mediate the effects of antigen dose and altered peptide ligands on Th cell polarization. J. Immunol. 162, 1923–1930 (1999).

    CAS  PubMed  Google Scholar 

  40. Reiner, S. L. & Seder, R. A. Dealing from the evolutionary pawnshop: how lymphocytes make decisions. Immunity 11, 1–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Jankovic, D. et al. Single cell analysis reveals that IL-4 receptor/Stat6 signaling is not required for the in vivo or in vitro development of CD4+ lymphocytes with a Th2 cytokine profile. J. Immunol. 164, 3047–3055 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12, 27–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Jankovic, D. et al. Schistosome-infected IL-4 receptor knockout (KO) mice, in contrast to IL-4 KO mice, fail to develop granulomatous pathology while maintaining the same lymphokine expression profile. J. Immunol. 163, 337–342 (1999).

    CAS  PubMed  Google Scholar 

  44. Hu-Li, J., Ohara, J., Watson, C., Tsang, W. & Paul, W. E. Derivation of a T cell line that is highly responsive to IL-4 and IL-2 (CT.4R) and of an IL-2 hyporesponsive mutant of that line (CT.4S). J. Immunol. 142, 800–807 (1989).

    CAS  PubMed  Google Scholar 

  45. Schreiber, E., Matthias, P., Muller, M. M. & Schaffner, W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 17, 6419 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Erdos, S. John, U. Siebenlist and K. Brown for advice on EMSAs; J. Hu-Li and D. Jankovic for advice on in vitro polarization cultures; J. Cote-Sierra for advice on GATA-3 assays; A. Venegas, M. Chetana, J. Shehadeh and G. Elliott for technical assistance; S. Barbieri, R. Swafford, and C. Eigsti for cell sorting; A. Rao, J. Powell and N. Rice for gifts of antibodies; and R. Germain, D. Jankovic, T. Wynn, M. Kullberg, J. Bluestone, W. Paul and A. Kimmel for critical discussions. Supported in part by the Searle Scholars Program/Chicago Community Trust (P. L. S.) and the HHMI-NIH Scholars Program (E. M. S. and C. M. L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela L. Schwartzberg.

Supplementary information

Web Figure 1

GATA-3 protein expression. (a) Purified T cells were stimulated with anti-CD3 for 40 h in the absence of cytokines, nuclear extracts prepared and GATA-3 protein expression examined by immunoblotting with monoclonal anti-GATA-3 or goat polyclonal anti-STAT6. (b) The specificity of the GATA-3 antibody was examined in nuclear extracts from cells that had been differentiated with TH1 or TH2 cytokines for 40 h. (JPG 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaeffer, E., Yap, G., Lewis, C. et al. Mutation of Tec family kinases alters T helper cell differentiation. Nat Immunol 2, 1183–1188 (2001). https://doi.org/10.1038/ni734

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni734

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing