Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A defect in central tolerance in NOD mice

Abstract

The predisposition of nonobese diabetic (NOD) mice to develop autoimmune disease is usually attributed to defects in peripheral tolerance mechanisms. Here, evidence is presented that NOD mice display a defect in central tolerance (negative selection) of thymocytes. Impaired central tolerance in NOD mice was most prominent in a population of semi-mature thymocytes found in the medulla. The defect was apparent in vivo as well as in vitro, was independent of IAβg7 expression and affected both Fas-dependent and Fas-independent pathways of apoptosis; for Fas-dependent apoptosis, the defective tolerance of NOD thymocytes correlated with the strong T cell receptor–mediated up-regulation of caspase 8–homologous FLICE (Fas-associated death-domain-like interleukin 1β–converting enzyme)-inhibitory protein. In light of these findings, disease onset in NOD mice may reflect defects in central as well as peripheral tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Susceptibility of immature and semi-mature thymocytes to in vitro tolerance induction.
Figure 2: Role of costimulation and cytokines in negative selection.
Figure 3: Negative selection of NOD HSAhiCD4+CD8 thymocytes in vivo.
Figure 4: SEB-induced negative selection of NOD HSAhiCD4+CD8 thymocytes in vivo.
Figure 5: Expression of activation markers after exposing thymocytes to graded concentrations of TCR mAb plus a fixed concentration of CD28 mAbs.
Figure 6: Sensitivity of thymocytes to Fas-dependent apoptosis and the role of cFLIP.

Similar content being viewed by others

References

  1. Nossal, G. J. V. Negative selection of lymphocytes. Cell 76, 229–239 (1994).

    Article  CAS  Google Scholar 

  2. Sprent, J. & Webb, S. R. Intrathymic and extrathymic clonal deletion of T cells. Curr. Opin. Immunol. 7, 196–205 (1995).

    Article  CAS  Google Scholar 

  3. Amsen, D. & Kruisbeek, A. M. Thymocyte selection: not by TCR alone. Immunol. Rev. 165, 209–229 (1998).

    Article  CAS  Google Scholar 

  4. Sebzda, E., Mariathasan, S., Ohteki, T., Jones, R., Bachmann, M. F. & Ohashi, P. S. Selection of the T cell repertoire. Annu. Rev. Immunol. 17, 829–874 (1999).

    Article  CAS  Google Scholar 

  5. Kishimoto, H. & Sprent, J. The thymus and negative selection. Immunol. Res. 21, 315–323 (2000).

    Article  CAS  Google Scholar 

  6. Izui, S., Ibnou-Zekri, N., Fossati-Jimack, L. & Iwamoto, M. Lessons from BXSB and related mouse models. Int. Rev. Immunol. 19, 447–472 (2000).

    Article  CAS  Google Scholar 

  7. Kono, D. H. & Theofilopoulos, A. N. Genetics of systemic autoimmunity in mouse models of lupus. Int. Rev. Immunol. 19, 367–387 (2000).

    Article  CAS  Google Scholar 

  8. Marrack, P., Kappler, J. & Kotzin, B. L. Autoimmune disease: why and where it occurs. Nature Med. 7, 899–905 (2001).

    Article  CAS  Google Scholar 

  9. Makino, S. et al. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu 29, 1–13 (1980).

    CAS  PubMed  Google Scholar 

  10. Wicker, L. S., Todd, J. A. & Peterson, L. B. Genetic control of autoimmune diabetes in the NOD mouse. Annu. Rev. Immunol. 13, 179–200 (1995).

    Article  CAS  Google Scholar 

  11. Delovitch, T. L. & Singh, B. The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 7, 727–738 (1997).

    Article  CAS  Google Scholar 

  12. Rapoport, M. J. et al. Interleukin 4 reverses T cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. J. Exp. Med. 178, 87–99 (1993).

    Article  CAS  Google Scholar 

  13. Cameron, M. J. et al. IL-4 prevents insulitis and insulin-dependent diabetes mellitus in nonobese diabetic mice by potentiation of regulatory T helper-2 cell function. J. Immunol. 159, 4686–4692 (1997).

    CAS  PubMed  Google Scholar 

  14. Cameron, M. J., Arreaza, G. A. & Delovitch, T. L. Cytokine- and costimulation-mediated therapy of IDDM. Crit. Rev. Immunol. 17, 537–544 (1997).

    CAS  PubMed  Google Scholar 

  15. Gombert, J. M. et al. IL-7 reverses NK1+ T cell-defective IL-4 production in the non-obese diabetic mouse. Int. Immunol. 8, 1751–1758 (1996).

    Article  CAS  Google Scholar 

  16. Gombert, J. M. et al. Early quantitative and functional deficiency of NK+-like thymocytes in the NOD mice. Eur. J. Immunol. 26, 2989–2998 (1996).

    Article  CAS  Google Scholar 

  17. Serreze, D. V. & Leiter, E. H. Defective activation of T suppressor cell function in nonobese diabetic mice. Potential relation to cytokine deficiencies. J. Immunol. 140, 3801–3807 (1988).

    CAS  PubMed  Google Scholar 

  18. Arreaza, G. A. et al. Neonatal activation of CD28 signaling overcomes T cell anergy and prevents autoimmune diabetes by an IL-4 dependent mechanism. J. Clin. Invest. 100, 8670–8674 (1997).

    Article  Google Scholar 

  19. Colucci, F., Bergman, M. L., Penha-Goncalves, C., Cilio, C. M. & Holmberg, D. Apoptosis resistance of nonobese diabetic peripheral lymphocytes linked to the Idd5 diabetes susceptibility region. Proc. Natl Acad. Sci. USA 94, 8670–8674 (1997).

    Article  CAS  Google Scholar 

  20. Rapoport, M. J., Lazarus, A. H., Jaramillo, A., Speck, E. & Delovitch, T. L. Thymic T cell anergy in autoimmune nonobese diabetic mice is mediated by deficient T cell receptor regulation of the pathway of p21ras activation. J. Exp. Med. 177, 1221–1226 (1993).

    Article  CAS  Google Scholar 

  21. Salojin, K. et al. Impaired plasma membrane targeting of Grb2-murine son of sevenless (mSOS) complex and differential activation of the Fyn-T cell receptor (TCR)-ζ-Cbl pathway mediate T cell hyporesponsiveness in autoimmune nonobese diabetic mice. J. Exp. Med. 186, 887–897 (1997).

    Article  CAS  Google Scholar 

  22. Tisch, R. & McDevitt, H. O. Insulin-dependent diabetes mellitus. Cell 85, 291–297 (1996).

    Article  CAS  Google Scholar 

  23. McDevitt, H. O. & Wakeland, E. K. Autoimmunity. Curr. Opin. Immunol. 10, 647–648 (1998).

    Article  CAS  Google Scholar 

  24. Ridgway, W. M., Fasso, M. & Fasthman, C. G. A new look at MHC and autoimmune diabetes. Science 284, 749–751 (1999).

    Article  CAS  Google Scholar 

  25. Ridgway, W. M. & Fathman, C. G. MHC structure and autoimmune T cell repertoire development. Curr. Opin. Immunol. 11, 638–642 (1999).

    Article  CAS  Google Scholar 

  26. Kanagawa, O., Vaupel, B. A., Xu, G., Unanue, E. R. & Katz, J. D. Thymic positive selection and peripheral activation of islet antigen-specific T cells: separation of two diabetogenic steps by an I-A(g7) class II MHC β-chain mutant. J. Immunol. 161, 4489–4492 (1998).

    CAS  PubMed  Google Scholar 

  27. Wicker, L. S., DeLarato, N. H., Pressey, A. & Peterson, L. B. Genetic control of diabetes and insulitis in the nonobese diabetic mouse: analysis of the NOD.H-2b and B10.H-2nod strains. in Molecular Mechanisms of Immunological Self-recognition (eds Alt, F.W. & Vogel, V.J.) 173–181 (Academic Press, New York, 1993).

    Google Scholar 

  28. Wicker, L. S. Major histocompatibility complex-linked control of autoimmunity. J. Exp. Med. 186, 973–975 (1997).

    Article  CAS  Google Scholar 

  29. Kishimoto, H. & Sprent, J. Negative selection in the thymus includes semimature T cells. J. Exp. Med. 185, 263–271 (1997).

    Article  CAS  Google Scholar 

  30. Kishimoto, H., Surh, C. D. & Sprent, J. A role for Fas in negative selection of thymocytes in vivo. J. Exp. Med. 187, 1427–1438 (1998).

    Article  CAS  Google Scholar 

  31. Kishimoto, H. & Sprent, J. Several different cell surface molecules control negative selection of medullary thymocytes. J. Exp. Med. 190, 65–73 (1999).

    Article  CAS  Google Scholar 

  32. Baldwin, A. S. Jr. The NF-κB and I-κB proteins. Annu. Rev. Immunol. 14, 649–684 (1996).

    Article  CAS  Google Scholar 

  33. Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. & Verma, I. M. Suppression of TNF-α-induced apoptosis by NF-κB. Science 274, 786–789 (1996).

    Article  Google Scholar 

  34. Page, D. M., Roberts, E. M., Peschon, J. J. & Hedrick, S. M. TNF receptor-deficient mice reveal striking differences between several models of thymocyte negative selection. J. Immunol. 160, 120–133 (1998).

    CAS  PubMed  Google Scholar 

  35. Punt, J. A., Havran, W., Abe, R., Sarin, A. & Singer, A. T cell receptor (TCR)-induced death of immature CD4+8+ thymocytes by two distinct mechanisms differing in their requirement for CD28 costimulation: implications for negative selection in the thymus. J. Exp. Med. 186, 1911–1922 (1997).

    Article  CAS  Google Scholar 

  36. Punt, J. A., Osborne, B. A., Takahama, Y., Sharrow, S. O. & Singer, A. Negative selection of CD4+CD8+ thymocytes by T cell receptor-induced apoptosis requires a costimulatory signal that can be provided by CD28. J. Exp. Med. 179, 709–713 (1994).

    Article  CAS  Google Scholar 

  37. Jondal, M., Okret, S. & McConkey, D. Killing of immature CD4+CD8+ thymocytes in vivo by anti-CD3 or 5′-(N-ethyl)-carboxamide adenosine is blocked by glucocorticoid receptor antagonist RU-486. Eur. J. Immunol. 23, 1246–1250 (1993).

    Article  CAS  Google Scholar 

  38. Xue, Y. et al. Inhibition of I-Ad-, but not Db-restricted peptide-induced thymic apoptosis by glucocorticoid receptor antagonist RU486 in T cell receptor transgenic mice. Eur. J. Immunol. 26, 428–434 (1996).

    Article  CAS  Google Scholar 

  39. Martin, S. & Bevan, M. J. Antigen-specific and nonspecific deletion of immature cortical thymocytes caused by antigen injection. Eur. J. Immunol. 27, 2726–2736 (1997).

    Article  CAS  Google Scholar 

  40. Radons, J., Burkart, V. & Kolb, H. MHC class II-dependent abnormal reactivity toward bacterial superantigens in immune cells of NOD mice. Diabetes 46, 379–385 (1997).

    Article  CAS  Google Scholar 

  41. Irmler, M., Hofmann, K., Vaux, D. & Tschopp, J. Direct physical interaction between the Caenorhabditis elegans 'death proteins' CED-3 and CED-4. FEBS Lett. 406, 189–190 (1997).

    Article  CAS  Google Scholar 

  42. Tschopp, J., Irmler, M. & Thome, M. Inhibition of fas death signals by FLIPs. Curr. Opin. Immunol. 10, 552–558 (1998).

    Article  CAS  Google Scholar 

  43. Scaffidi, C., Schmitz, I., Krammer, P. H. & Peter, M. E. The role of c-FLIP in modulation of CD95-induced apoptosis. J. Biol. Chem. 274, 1541–1548 (1999).

    Article  CAS  Google Scholar 

  44. Surh, C. D. & Sprent, J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature (Lond.) 372, 100–103 (1994).

    Article  CAS  Google Scholar 

  45. Wisniewska, M., Stanczyk, M., Grzelakowska-Sztabert, B. & Kaminska, B. Nuclear factor of activated T cells (NFAT) is a possible target for dexamethasone in thymocyte apoptosis. Cell Biol. Internat. 21, 127–132 (1997).

    Article  CAS  Google Scholar 

  46. Linette, G. P., Li, Y., Roth, K. & Korsmeyer, S. J. Cross talk between cell death and cell cycle progression: BCL-2 regulated NFAT-mediated activation. Proc. Natl Acad. Sci. USA 93, 9545–9552 (1996).

    Article  CAS  Google Scholar 

  47. Boise, L. H. et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608 (1993).

    Article  CAS  Google Scholar 

  48. Ridgway, W. M., Fasso, M., Lanctot, A., Garvey, C. & Fathman, C. G. Braking self tolerance in nonobese diabetic mice. J. Exp. Med. 183, 1657–1662 (1996).

    Article  CAS  Google Scholar 

  49. Tian, J., Gregori, S., Adorini, L. & Kaufman, D. L. The frequency of high avidity T cells determine the hierarchy of determinant spreading. J. Immunol. 166, 7144–7157 (2001).

    Article  CAS  Google Scholar 

  50. Targoni, O. S., & Lehman, P. V. Endogenous myelin basic protein inactivates the high avidity T cell repertoire. J. Exp. Med. 187, 2055–2063 (1998).

    Article  CAS  Google Scholar 

  51. Klein, L., Klugmann, M., Nave, K. A., Tuohy, V. K. & Kyewski, B. Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nature Med. 6, 56–61 (2000).

    Article  CAS  Google Scholar 

  52. Anderson, A. C. et al. High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naïve mice: mechanisms of selection of the self-reactive repertoire. J. Exp. Med. 191, 761–770 (2000).

    Article  CAS  Google Scholar 

  53. Bennet, S. T. et al. Susceptibility of human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nature Genet. 9, 284–292 (1995).

    Article  Google Scholar 

  54. Vafiadis, P. et al. Insulin expression in human thymus is modulated by INSVNTR alleles at the IDDM2 locus. Nature Genet. 15, 289–292 (1997).

    Article  CAS  Google Scholar 

  55. Varfolomeev, E. E. et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267–276 (1998).

    Article  CAS  Google Scholar 

  56. Hill, N. J. et al. NOD Idd5 locus controls insulitis and diabetes and overlaps the orthologous CTLA4/IDDM12 and NRAMP1 loci in humans. Diabetes 49, 1744–1747 (2000).

    Article  CAS  Google Scholar 

  57. Schmidt, D., Verdaguer, J., Averill, N. & Santamaria, P. A mechanism for the major histocompatibility complex-linked resistance to autoimmunity. J. Exp. Med. 186, 1059–1075 (1997).

    Article  CAS  Google Scholar 

  58. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  59. Zhang, X., Sun, S., Hwang, I., Tough, D. F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591–599 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Marchand for typing the manuscript and R. Salmon for assistance in developing the RT-PCR system for the FLIP gene. Supported by grants CA38355, AI21487, AI46710 and AG01743 from the United States Public Health Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Sprent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kishimoto, H., Sprent, J. A defect in central tolerance in NOD mice. Nat Immunol 2, 1025–1031 (2001). https://doi.org/10.1038/ni726

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni726

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing