Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self

Abstract

Expression of peripheral antigens in the thymus has been implicated in T cell tolerance and autoimmunity. Here we identified medullary thymic epithelial cells as being a unique cell type that expresses a diverse range of tissue-specific antigens. We found that this promiscuous gene expression was a cell-autonomous property of medullary epithelial cells and was maintained during the entire period of thymic T cell output. It may facilitate tolerance induction to self-antigens that would otherwise be temporally or spatially secluded from the immune system. However, the array of promiscuously expressed self-antigens appeared random rather than selected and was not confined to secluded self-antigens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Promiscuous expression of tissue-specific genes by distinct thymic stromal cells.
Figure 2: Expression of pancreatic autoantigens in mTECs versus thymic or splenic DCs.
Figure 3: Protein expression of tissue-antigens by mTECs.
Figure 4: Promiscuous gene expression by subsets of mTECs.
Figure 5: Promiscuous gene expression during ontogeny.
Figure 6: Promiscuous expression of a fetal tissue antigen.
Figure 7: Promiscuous gene expression in RAG-2−/− mice.
Figure 8: Expression of SAP in mTECs is sufficient, but not necessary for T cell tolerance.

Similar content being viewed by others

References

  1. Nossal, G. J. Negative selection of lymphocytes. Cell 76, 229–239 (1994).

    Article  CAS  Google Scholar 

  2. Goodnow, C. C., Adelstein, S. & Basten, A. The need for central and peripheral tolerance in the B cell repertoire. Science 248, 1373–1379 (1990).

    Article  CAS  Google Scholar 

  3. Von Boehmer, H. & Kisielow, P. Self-nonself discrimination by T cells. Science 248, 1369–1373 (1990).

    Article  CAS  Google Scholar 

  4. Stockinger, B. T lymphocyte tolerance: from thymic deletion to peripheral control mechanisms. Adv. Immunol. 71, 229–265 (1999).

    Article  CAS  Google Scholar 

  5. Miller, J. F. A. P. & Heath, W. H. Self-ignorance in the peripheral T-cell pool. Immunol. Rev. 133, 131–150 (1993).

    Article  CAS  Google Scholar 

  6. Hanahan, D. Peripheral-antigen-expressing cells in the thymic medulla: factors in self-tolerance and autoimmunity. Curr. Opin. Immunol. 10, 656–662 (1998).

    Article  CAS  Google Scholar 

  7. Klein, L. & Kyewski, B. Promiscuous expression of “tissue-antigens” in the thymus: A key to T-cell tolerance and autoimmunity? J. Mol. Med. 78, 483–494 (2000).

    Article  CAS  Google Scholar 

  8. Pugliese, A. et al. The Insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nature Genet. 15, 293–297 (1997).

    Article  CAS  Google Scholar 

  9. Vafiadis, P. et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nature Genet. 15, 289–292 (1997).

    Article  CAS  Google Scholar 

  10. Egwuagu, C. E., Charukamnoetkanok, P. & Gery, I. Thymic expression of autoantigens correlates with resistance to autoimmune disease. J. Immunol. 159, 3109–3112 (1997).

    CAS  PubMed  Google Scholar 

  11. Liu, H., MacKenzie-Graham, J., Kim, S. & Voskuhl, R. R. Mice resistant to experimental autoimmune encephalomyelitis have increased thymic expression of myelin basic protein and increased MBP specific T cell tolerance. J. Neuroimmunol. 115, 118–126 (2001).

    Article  CAS  Google Scholar 

  12. Klein, L., Klugmann, M., Nave, K.-A., Tuohy, V. K. & Kyewski, B. Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nature Med. 6, 56–61 (2000).

    Article  CAS  Google Scholar 

  13. Anderson, A. C. et al. High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naïve mice: mechanisms of selection of the self-reactive repertoire. J. Exp. Med. 191, 761–770 (2000).

    Article  CAS  Google Scholar 

  14. Tuohy V. K. et al. The epitope spreading cascade during progression of experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol. Rev. 164, 93–100 (1998).

    Article  CAS  Google Scholar 

  15. Smith, K. M., Olson, D. C., Hirose, R. & Hanahan, D. Pancreatic gene expression in rare cells of thymic medulla: evidence for functional contribution to T cell tolerance. Int. Immunol. 9, 1355–1365 (1997).

    Article  CAS  Google Scholar 

  16. Throsby M. et al. Pancreatic hormone expression in the murine thymus: localization in dendritic cells and macrophages. Endocrinology 139, 2399–2406 (1998).

    Article  CAS  Google Scholar 

  17. Pugliese, A. et al. Self-antigen-presenting cells expressing diabetes-associated autoantigens exist in both thymus and peripheral lymphoid organs. J. Clin. Invest. 107, 555–564 (2001).

    Article  CAS  Google Scholar 

  18. Heath, W. R. et al. Autoimmune diabetes as a consequence of locally produced interleukin-2. Nature 359, 547–549 (1992).

    Article  CAS  Google Scholar 

  19. Antonia, S. J., Geiger, T., Miller, J. & Flavell, R. A. Mechanisms of immune tolerance induction through the thymic expression of a peripheral tissue-specific protein. Int. Immunol. 7, 715–725 (1994).

    Article  Google Scholar 

  20. Klein, L., Klein, T., Ruether, U. & Kyewski, B. CD4 T cell tolerance to human C-reactive protein, an inducible serum protein, is mediated by medullary thymic epithelium. J. Exp. Med. 188, 1–16 (1998).

    Article  Google Scholar 

  21. Klein, L., Roettinger, B. & Kyewski, B. Sampling of complementing self-antigen pools by thymic stromal cells maximizes the scope of central T cell tolerance. Eur. J. Immunol. 31, 2476–2486 (2001).

    Article  CAS  Google Scholar 

  22. Nehls, M. et al. Two genetically separable steps in the differentiation of thymic epithelium. Science 272, 886–889 (1996).

    Article  CAS  Google Scholar 

  23. Nakagawa, T. et al. Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science 280, 450–453 (1998).

    Article  CAS  Google Scholar 

  24. Heino, M. et al. Autoimmune regulator is expressed in the cells regulating immune tolerance in thymus medulla. Biochem. Biophys. Res. Commun. 257, 821–825 (2000).

    Article  Google Scholar 

  25. Heino, M. et al. RNA and protein expression of the murine autoimmune regulator gene (Aire) in normal, RelB-deficient and in NOD mouse. Eur. J. Immunol. 30, 1884–1893 (2000).

    Article  CAS  Google Scholar 

  26. Jolicoeur, C., Hanahan, D. & Smith, K. M. T-cell tolerance toward a transgenic β-cell antigen and transcription of endogenous pancreatic genes in thymus. Proc. Natl Acad. Sci. USA 91, 6707–6711 (1994).

    Article  CAS  Google Scholar 

  27. Sospedra, M. et al. Transcription of a broad range of self-antigens in human thymus suggests a role for central mechanisms in tolerance toward peripheral antigens. J. Immunol. 161, 5918–5929 (1998).

    CAS  PubMed  Google Scholar 

  28. Heath, V. L. et al. Intrathymic expression of genes involved in organ specific autoimmune disease. J. Autoimm. 11, 309–318 (1998).

    Article  CAS  Google Scholar 

  29. Diez, J. et al. Differential splicing of the IA-2 mRNA in pancreas and lymphoid organs as a permissive genetic mechanism for autoimmunity against IA-2 type 1 diabetes. Diabetes 50, 895–900 (2001).

    Article  CAS  Google Scholar 

  30. Degermann, S., Surh, C. D., Glimcher, L. H., Sprent, J. & Lo, D. B7 expression on thymic medullary epithelium correlates with epithelium-mediated deletion of Vβ5+ thymocytes. J. Immunol. 152, 3254–3263 (1994).

    CAS  PubMed  Google Scholar 

  31. Naspetti, M. et al. Thymocytes and RelB-dependent medullary epithelial cells provide growth-promoting and organization signals, respectively, to thymic medullary stromal cells. Eur. J. Immunol. 27, 1392–1397 (1997).

    Article  CAS  Google Scholar 

  32. Jamieson, B. S. et al. Generation of functional thymocytes in the human adult. Immunity 10, 569–575 (1999).

    Article  CAS  Google Scholar 

  33. Naquet, P., Naspetti, M. & Boyd, R. Development, organization and function of the thymic medulla in normal, immunodeficient or autoinmmune mice. Semin. Immunol. 11, 47–55 (1999).

    Article  CAS  Google Scholar 

  34. Van Ewijk, W., Holländer, G., Terhorst, C. & Wang, B. Stepwise development of thymic microenvironments in vivo is regulated by thymocyte subsets. Development 127, 1583–1591 (2000).

    CAS  PubMed  Google Scholar 

  35. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  Google Scholar 

  36. Chan, S. et al. Another view of the selective model of thymocyte selection. Cell 73, 225–236 (1993).

    Article  CAS  Google Scholar 

  37. Hecht, N. B. The making of a spermatozoon: a molecular perspective. Dev. Genet. 16, 95–103 (1995).

    Article  CAS  Google Scholar 

  38. Pepys, M. B., Baltz, M., Gomer, K., Davies, A. J. S. & Doenhoff, M. Serum amyloid P-component is an acute-phase reactant in mouse. Nature 278, 259–261 (1979).

    Article  CAS  Google Scholar 

  39. Pepys, M. B. & Baltz, M. L. Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv. Immunol. 34, 141–212 (1983).

    Article  CAS  Google Scholar 

  40. Botto, M. et al. Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene. Nature Med. 3, 855–859 (1997).

    Article  CAS  Google Scholar 

  41. Chelly, J., Concordet, J. P., Kaplan, J. C. & Kahn. A. Illegitimate transcription: transcription of any gene in any cell type. Proc. Natl Acad. Sci. USA 86, 2617–2621 (1989).

    Article  CAS  Google Scholar 

  42. Sarakar, G. & Sommer, S. S. Access to a messenger RNA sequence or its protein product is not limited by tissue or species specificity. Science 244, 331–334 (1989).

    Article  Google Scholar 

  43. Gygi, S., Rochon, Y., Franza, B. R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730 (1999).

    Article  CAS  Google Scholar 

  44. Kojima, K., Reindl, M., Lassmann, H., Wekerle, H. & Linington. C. The thymus and self-tolerance: co-existence of encephalitogenic S100 β-specific T cells and their nominal autoantigen in the normal adult rat thymus. Int. Immunol. 9, 897–904 (1997).

    Article  CAS  Google Scholar 

  45. Targoni, O. S. & Lehmann, P. V. Endogenous myelin basic protein inactivates the high avidity T cell repertoire. J. Exp. Med. 187, 2055–2063 (1998)

    Article  CAS  Google Scholar 

  46. Harrington, C. J. et al. Differential tolerance is induced in T cells recognizing distinct epitopes of myelin basic protein. Immunity 8, 571–580 (1998).

    Article  CAS  Google Scholar 

  47. Volkmann, A. & Stockinger, G. Antigen-presenting cells in the thymus that can negatively select MHC class II-restricted T cells recognizing a circulating self-antigen. J. Immunol. 158, 693–706 (1997).

    CAS  PubMed  Google Scholar 

  48. Links, R., Gottesman, M. & Pernis, B. Are tissues a patch quilt of ectopic gene expression? Science 246, 261 (1989).

    Google Scholar 

  49. Farr, A. G. & Rudensky, A. 1998. Medullary thymic epithelium: a mosaic of epithelial “self”? J. Exp. Med. 188, 1–4 (1998).

    Article  CAS  Google Scholar 

  50. Boon T, Coulie, G. & van den Eynde, B. Tumor antigens recognized by T cells. Immunol. Today 18, 267–268 (1997).

    Article  CAS  Google Scholar 

  51. Morgan, D. J. et al. Activation of low avidity CTL specific for self epitope results in tumor rejection but not autoimmunity. J. Immunol. 160, 643–651 (1998).

    CAS  PubMed  Google Scholar 

  52. De Visser, K. E. et al. Tracing and characterization of the low-avidity self-specific T cell repertoire. Eur. J. Immunol. 30, 1458–1468 (2000).

    Article  CAS  Google Scholar 

  53. Seddon, B. & Mason, D. The third function of the thymus. Immunol. Today 21, 95–99 (2000).

    Article  CAS  Google Scholar 

  54. Sakaguchi, S. Regulatory T cells: key controllers of immunologic self tolerance. Cell 101, 455–458 (2000).

    Article  CAS  Google Scholar 

  55. Jordan, M. S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nature Immunol. 2, 301–306 (2001).

    Article  CAS  Google Scholar 

  56. Le Douarin, N. et al. Evidence for a thymus-dependent form of tolerance that is not based on elimination or anergy of reactive T cells. Immunol. Rev. 149, 35–53 (1996).

    Article  CAS  Google Scholar 

  57. Klein, L. & Kyewski, B. Self-antigen presentation by thymic stromal cells: a subtle division of labor. Curr. Opin. Immunol. 12, 179–186 (2000).

    Article  CAS  Google Scholar 

  58. Peterson, P. et al. APECED: a monogenic autoimmune disease providing new clues to self-tolerance. Immunol. Today 19, 384–386 (1998).

    Article  CAS  Google Scholar 

  59. Pepys, M. B. Isolation of serum amyloid P component (protein SAP) in the mouse. Immunology 37, 637–641 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jung, M., Sommer, I., Schachner, M. & Nave, K.-A. Monoclonal antibody 010 defines a conformationally sensitive cell-surface epitope of proteolipid protein (PLP): evidence that PLP misfolding underlies dysmyelination in mutant mice. J. Neurosci. 16, 7920–7929 (1996).

    Article  CAS  Google Scholar 

  61. Amar-Costesec, A., Godelaine, D., Van den Eynde, B. & Beaufy, H. Identification and characterization of the tumor-specific P1A gene product. Biol. Cell 81, 195–203 (1994).

    Article  CAS  Google Scholar 

  62. den Haan, J. M., Lehar, S. M. & Bevan, M. J. CD8+ but not CD8- dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192, 1685–1696 (2000).

    Article  CAS  Google Scholar 

  63. Born, W. & Wekerle, H. Selective, immunologically nonspecific adherence of lymphoid and myeloid cells to Leydig cells. Eur. J. Cell Biol. 25, 76–81 (1981).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Gotter, J. Trotter and W. van Ewijk for helpful suggestions; M. B. Pepys (Royal Free and University College Medical School, London) for providing purified mouse SAP and SAP-deficient mice; B. Arnold, T. Boehm, R. Ganss, J. Trotter, T. Schlake and B. van den Eynde for reagents and mice; and S. Hoeflinger, S. Fuchs and K. Hexel for assistance. Supported by the Deutsche Forschungsgemeinschaft (grants Ky7/6-1 and the SFB 405 to B. K. and LK1228/1-1 to L. K.) and the German Cancer Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Kyewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derbinski, J., Schulte, A., Kyewski, B. et al. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2, 1032–1039 (2001). https://doi.org/10.1038/ni723

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni723

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing