Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional antigen-independent synapses formed between T cells and dendritic cells

Abstract

Immunological synapse formation is usually assumed to require antigen recognition by T cell receptors. However, the immunological synapse formed at the interface between naïve T cells and dendritic cells (DCs) has never been described. We show here that in the absence of antigen, and even of major histocompatibility complex molecules, T cell–DC synapses are formed and lead to several T cell responses: a local increase in tyrosine phosphorylation, small Ca2+ responses, weak proliferation and long-term survival. These responses are triggered more readily in CD4+ T cells than in CD8+ T cells, which express a specific isoform of the repulsive molecule CD43. These phenomena may play a major role in the maintenance of the naïve T cell pool in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DC-induced antigen-independent Ca2+ responses in CD4+ and CD8+ T cells.
Figure 2: Phenotypic analysis of naïve polyclonal CD4+ and CD8+ T cell surface molecules.
Figure 3: Redistribution of various molecules in and out of antigen-independent T cell–DC synapses.
Figure 4: Antigen-independent T cell–DC interaction led to PKC-θ polarization and a local increase in tyrosine phosphorylation.
Figure 5: Antigen-independent Ca2+ response and synapse formation occurred in the same CD4+ T cell–DC conjugates.
Figure 6: Analysis of T cell cycling.
Figure 7: In vitro T cell survival.

Similar content being viewed by others

References

  1. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  2. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  Google Scholar 

  3. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  Google Scholar 

  4. Krummel, M. F., Sjaastad, M. D., Wulfing, C. & Davis, M. M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science 289, 1349–1352 (2000).

    Article  CAS  Google Scholar 

  5. Wulfing, C. & Davis, M. M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).

    Article  CAS  Google Scholar 

  6. Delon, J., Bercovici, N., Liblau, R. & Trautmann, A. Imaging antigen recognition by naïve CD4+ T cells: compulsory cytoskeletal alterations for the triggering of an intracellular calcium response. Eur. J. Immunol. 28, 716–729 (1998).

    Article  CAS  Google Scholar 

  7. Delon, J., Bercovici, N., Raposo, G., Liblau, R. & Trautmann, A. Antigen-dependent and -independent Ca2+ responses triggered in T cells by dendritic cells compared with B cells. J. Exp. Med. 188, 1473–1484 (1998).

    Article  CAS  Google Scholar 

  8. Ellies, L. G., Jones, A. T., Williams, M. J. & Ziltener, H. J. Differential regulation of CD43 glycoforms on CD4+ and CD8+ T lymphocytes in graft-versus–host disease. Glycobiology 4, 885–893 (1994).

    Article  CAS  Google Scholar 

  9. Jones, A. T. et al. Characterization of the activation-associated isoform of CD43 on murine T lymphocytes. J. Immunol. 153, 3426–3439 (1994).

    CAS  PubMed  Google Scholar 

  10. Dustin, M. L. & Cooper, J. A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nature Immunol. 1, 23–29 (2000).

    Article  CAS  Google Scholar 

  11. Monks, C. R., Kupfer, H., Tamir, I., Barlow, A. & Kupfer, A. Selective modulation of protein kinase C-θ during T-cell activation. Nature 385, 83–86 (1997).

    Article  CAS  Google Scholar 

  12. Lyons, A. B. & Parish, C. R. Determination of lymphocyte division by flow cytometry. J. Immunol. Meth. 171, 131–137 (1994).

    Article  CAS  Google Scholar 

  13. Lyons, A. B. Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J. Immunol. Meth. 243, 147–154 (2000).

    Article  CAS  Google Scholar 

  14. Gett, A. V. & Hodgkin, P. D. A cellular calculus for signal integration by T cells. Nature Immunol. 1, 239–244 (2000).

    Article  CAS  Google Scholar 

  15. Montes, M., McIlroy, D., Hosmalin, A. & Trautmann, A. Calcium responses elicited in human T cells and dendritic cells by cell- cell interaction and soluble ligands. Int. Immunol. 11, 561–568 (1999).

    Article  CAS  Google Scholar 

  16. Lantz, O., Grandjean, I., Matzinger, P. & Di Santo, J. P. γ chain required for naïve CD4+ T cell survival but not for antigen proliferation. Nature Immunol. 1, 54–58 (2000).

    Article  CAS  Google Scholar 

  17. Kisielow, P., Bluthmann, H., Staerz, U. D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742–746 (1988).

    Article  CAS  Google Scholar 

  18. Donnadieu, E. et al. Differential roles of Lck and Itk in T cell response to antigen recognition revealed by calcium imaging and electron microscopy. J. Immunol. 166, 5540–5549 (2001).

    Article  CAS  Google Scholar 

  19. Kanner, S. B., Grosmaire, L. S., Ledbetter, J. A. & Damle, N. K. β2-integrin LFA-1 signaling through phospholipase C-γ1 activation. Proc. Natl Acad. Sci. USA 90, 7099–7103 (1993).

    Article  CAS  Google Scholar 

  20. Ledbetter, J. A. et al. Role of CD2 cross-linking in cytoplasmic calcium responses and T cell activation. Eur. J. Immunol. 18, 1601–1608 (1988).

    Article  CAS  Google Scholar 

  21. Ledbetter, J. A. et al. CD28 ligation in T-cell activation: evidence for two signal transduction pathways. Blood 75, 1531–1539 (1990).

    CAS  PubMed  Google Scholar 

  22. Juan, M. et al. CD50 (intercellular adhesion molecule 3) stimulation induces calcium mobilization and tyrosine phosphorylation through p59fyn and p56lck in Jurkat T cell line. J. Exp. Med. 179, 1747–1756 (1994).

    Article  CAS  Google Scholar 

  23. Tsuboi, S. & Fukuda, M. Branched O-linked oligosaccharides ectopically expressed in transgenic mice reduce primary T-cell immune responses. EMBO J. 16, 6364–6373 (1997).

    Article  CAS  Google Scholar 

  24. Donnadieu, E., Revy, P. & Trautmann, A. Imaging T-cell antigen recognition and comparing immunological and neuronal synapses. Immunology 103, 417–425 (2001).

    Article  CAS  Google Scholar 

  25. Wong, P., Barton, G. M., Forbush, K. A. & Rudensky, A. Y. Dynamic tuning of T cell reactivity by self-peptide-major histocompatibility complex ligands. J. Exp. Med. 193, 1179–1187 (2001).

    Article  CAS  Google Scholar 

  26. Geijtenbeek, T. B. et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100, 575–585 (2000).

    Article  CAS  Google Scholar 

  27. Gunzer, M. et al. Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity 13, 323–332 (2000).

    Article  CAS  Google Scholar 

  28. Kirberg, J., von Boehmer, H., Brocker, T., Rodewald, H. R. & Takeda, S. Class II essential for CD4 survival. Nature Immunol. 2, 136 (2001).

    Article  CAS  Google Scholar 

  29. Dorfman, J. R., Stefanova, I., Yasutomo, K. & Germain, R. N. Response to “Class II essential for CD4 survival”. Nature Immunol. 2, 136–137 (2001).

    Article  CAS  Google Scholar 

  30. Tanchot, C., Lemonnier, F. A., Perarnau, B., Freitas, A. A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naïve or memory T cells. Science 276, 2057–2062 (1997).

    Article  CAS  Google Scholar 

  31. Brocker, T. Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. J. Exp. Med. 186, 1223–1232 (1997).

    Article  CAS  Google Scholar 

  32. Dorfman, J. R., Stefanova, I., Yasutomo, K. & Germain, R. N. CD4+ T cell survival is not directly linked to self-MHC-induced TCR signaling. Nature Immunol. 1, 329–335 (2000).

    Article  CAS  Google Scholar 

  33. Clarke, S. R. & Rudensky, A. Y. Survival and homeostatic proliferation of naøve peripheral CD4+ T cells in the absence of self peptide:MHC complexes. J. Immunol. 165, 2458–2464 (2000).

    Article  CAS  Google Scholar 

  34. Witherden, D. et al. Tetracycline-controllable selection of CD4(+) T cells: half-life and survival signals in the absence of major histocompatibility complex class II molecules. J. Exp. Med. 191, 355–364 (2000).

    Article  CAS  Google Scholar 

  35. Grewal, I. S. & Flavell, R. A. CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol. 16, 111–135 (1998).

    Article  CAS  Google Scholar 

  36. Gosgrove, D. et al. Mice lacking MHC class II molecules. Cell 66, 1051–1066 (1991).

    Article  Google Scholar 

  37. Koller, B. H., Marrack, P., Kappler, J. W. & Smithies, O. Normal development of mice deficient in β2M, MHC class I proteins, and CD8+ T cells. Science 248, 1227–1230 (1990).

    Article  CAS  Google Scholar 

  38. Donnadieu, E., Bismuth, G. & Trautmann, A. Antigen recognition by helper T cells elicits a sequence of distinct changes of their shape and intracellular calcium. Curr. Biol. 4, 584–595 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Randriamampita, G. Bismuth, E. Donnadieu and O. Lantz for helpful discussions and comments on the manuscript and I. Bouchaert and N. Lebrun for help with confocal microscopy and flow cytometry acquisition. Supported by the European community TMR program (M. S.), the Association pour la Recherche sur le Cancer (P. R.) and grants from CNRS and the Ligue Nationale Contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Trautmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revy, P., Sospedra, M., Barbour, B. et al. Functional antigen-independent synapses formed between T cells and dendritic cells. Nat Immunol 2, 925–931 (2001). https://doi.org/10.1038/ni713

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing