Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Post-transcriptional control of cytokine production

Abstract

The cytokine-encoding messenger RNA (mRNA) molecules transcribed in the nucleus acquire a protein coat that facilitates nuclear export, influences cytoplasmic localization, and determines stability and translational competence. The composition of this coat is determined by sequence elements that recruit proteins that influence the rate of translation and/or mRNA decay. Some of these regulatory proteins direct their associated mRNA molecules to discrete cytoplasmic foci (stress granules and processing bodies) that are essential in 'programming' mRNA 'metabolism'. Studies have begun to identify how these various mechanisms are integrated and regulated to determine the amount of cytokine production in cells involved in immune responses. Understanding of these mechanisms has identified targets for the development of new classes of immunomodulatory drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 'Circuitry' of ARE-BP interactions.

Katie Ris-Vicari

Figure 2: Post-transcriptional control of TNF production.

Katie Ris-Vicari

Similar content being viewed by others

References

  1. Stoecklin, G. & Anderson, P. Posttranscriptional mechanisms regulating the inflammatory response. Adv. Immunol. 89, 1–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Hamilton, T.A. et al. Chemokine and chemoattractant receptor expression: post-transcriptional regulation. J. Leukoc. Biol. 82, 213–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Khabar, K.S. Rapid transit in the immune cells: the role of mRNA turnover regulation. J. Leukoc. Biol. 81, 1335–1344 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Anderson, P. & Kedersha, N. RNA granules. J. Cell Biol. 172, 803–808 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Caput, D. et al. Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc. Natl. Acad. Sci. USA 83, 1670–1674 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shaw, G. & Kamen, R. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46, 659–667 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Stoecklin, G. et al. Genome-wide analysis identifies interleukin-10 mRNA as target of tristetraprolin. J. Biol. Chem. published online 6 February 2008 (doi:10.1074/jbc.M709657200).

    Article  CAS  Google Scholar 

  8. Chen, C.Y.A. & Shyu, A.B. AU-rich elements: Characterization and importance in mRNA degradation. Trends Biochem. Sci. 20, 465–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, C.Y.A., Xu, N. & Shyu, A.B. mRNA decay mediated by two distinct AU-rich elements from c-fos and granulocyte-macrophage colony-stimulating factor transcripts: Different deadenylation kinetics and uncoupling from translation. Mol. Cell. Biol. 15, 5777–5788 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lagnado, C.A., Brown, C.Y. & Goodall, G.J. AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: the functional sequence within AU-rich elements may be UUAUUUA(U/A)(U/A). Mol. Cell. Biol. 14, 7984–7995 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zubiaga, A.M., Belasco, J.G. & Greenberg, M.E. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol. Cell. Biol. 15, 2219–2230 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blackshear, P.J. et al. Characteristics of the interaction of a synthetic human tristetraprolin tandem zinc finger peptide with AU-rich element-containing RNA substrates. J. Biol. Chem. 278, 19947–19955 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Worthington, M.T. et al. RNA binding properties of the AU-rich element-binding recombinant Nup475/TIS11/tristetraprolin protein. J. Biol. Chem. 277, 48558–48564 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Lopez de Silanes, I. et al. Identification and functional outcome of mRNAs associated with RNA-binding protein TIA-1. Mol. Cell. Biol. 25, 9520–9531 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Piecyk, M. et al. TIA-1 is a translational silencer that selectively regulates the expression of TNF-α. EMBO J. 19, 4154–4163 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garnon, J. et al. Fragile X-related protein FXR1P regulates proinflammatory cytokine tumor necrosis factor expression at the post-transcriptional level. J. Biol. Chem. 280, 5750–5763 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Mukhopadhyay, D., Houchen, C.W., Kennedy, S., Dieckgraefe, B.K. & Anant, S. Coupled mRNA stabilization and translational silencing of cyclooxygenase-2 by a novel RNA binding protein, CUGBP2. Mol. Cell 11, 113–126 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Carballo, E., Lai, W.S. & Blackshear, P.J. Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281, 1001–1005 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Stoecklin, G. et al. Functional cloning of BRF1, a regulator of ARE-dependent mRNA turnover. EMBO J. 21, 4709–4718 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chou, C.F. et al. Tethering KSRP, a decay-promoting AU-rich element-binding protein, to mRNAs elicits mRNA decay. Mol. Cell. Biol. 26, 3695–3706 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gherzi, R. et al. A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol. Cell 14, 571–583 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Laroia, G., Cuesta, R., Brewer, G. & Schneider, R.J. Control of mRNA decay by heat shock-ubiquitin-proteasome pathway. Science 284, 499–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Lu, J.Y., Bergman, N., Sadri, N. & Schneider, R.J. Assembly of AUF1 with eIF4G-poly(A) binding protein complex suggests a translation function in AU-rich mRNA decay. RNA 12, 883–893 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu, J.Y., Sadri, N. & Schneider, R.J. Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev. 20, 3174–3184 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sarkar, B., Xi, Q., He, C. & Schneider, R.J. Selective degradation of AU-rich mRNAs promoted by the p37 AUF1 protein isoform. Mol. Cell. Biol. 23, 6685–6693 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fan, X.C. & Steitz, J.A. Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. 17, 3448–3460 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peng, S.S., Chen, C.Y., Xu, N. & Shyu, A.B. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J. 17, 3461–3470 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Galban, S. et al. RNA-binding proteins HuR and PTB promote the translation of hypoxia-inducible factor-1α. Mol. Cell Biol. 28, 93–107 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Katsanou, V. et al. HuR as a negative posttranscriptional modulator in inflammation. Mol. Cell 19, 777–789 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Kawai, T. et al. Translational control of cytochrome c by RNA-binding proteins TIA-1 and HuR. Mol. Cell. Biol. 26, 3295–3307 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sureban, S.M. et al. Functional antagonism between RNA binding proteins HuR and CUGBP2 determines the fate of COX-2 mRNA translation. Gastroenterology 132, 1055–1065 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Linker, K. et al. Involvement of KSRP in the post-transcriptional regulation of human iNOS expression-complex interplay of KSRP with TTP and HuR. Nucleic Acids Res. 33, 4813–4827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. David, P.S., Tanveer, R. & Port, J.D. FRET-detectable interactions between the ARE binding proteins, HuR and p37AUF1. RNA 13, 1453–1468 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pan, Y.X., Chen, H. & Kilberg, M.S. Interaction of RNA-binding proteins HuR and AUF1 with the human ATF3 mRNA 3′-untranslated region regulates its amino acid limitation-induced stabilization. J. Biol. Chem. 280, 34609–34616 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Yamasaki, S., Stoecklin, G., Kedersha, N., Simarro, M. & Anderson, P. T-cell intracellular antigen-1 (TIA-1)-induced translational silencing promotes the decay of selected mRNAs. J. Biol. Chem. 282, 30070–30077 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Rothe, F., Gueydan, C., Bellefroid, E., Huez, G. & Kruys, V. Identification of FUSE-binding proteins as interacting partners of TIA proteins. Biochem. Biophys. Res. Commun. 343, 57–68 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Liao, B., Hu, Y. & Brewer, G. Competitive binding of AUF1 and TIAR to MYC mRNA controls its translation. Nat. Struct. Mol. Biol. 14, 511–518 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Chrestensen, C.A. et al. MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14–3-3 binding. J. Biol. Chem. 279, 10176–10184 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Stoecklin, G., Stubbs, T., Kedersha, N., Blackwell, T.K. & Anderson, P. MK2-induced tristetraprolin:14–3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J. 23, 1313–1324 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun, L. et al. Tristetraprolin (TTP)-14–3-3 complex formation protects TTP from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor-alpha mRNA. J. Biol. Chem. 282, 3766–3777 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Schmidlin, M. et al. The ARE-dependent mRNA-destabilizing activity of BRF1 is regulated by protein kinase B. EMBO J. 23, 4760–4769 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Benjamin, D., Schmidlin, M., Min, L., Gross, B. & Moroni, C. BRF1 protein turnover and mRNA decay activity are regulated by protein kinase B at the same phosphorylation sites. Mol. Cell. Biol. 26, 9497–9507 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gherzi, R. et al. The RNA-binding protein KSRP promotes decay of β-catenin mRNA and is inactivated by PI3K-AKT signaling. PLoS Biol. 5, e5 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. He, C. & Schneider, R. 14–3-3sigma is a p37 AUF1-binding protein that facilitates AUF1 transport and AU-rich mRNA decay. EMBO J. 25, 3823–3831 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pyronnet, S. et al. Human eukaryotic translation initiation factor 4G (eIF4G) recruits Mnk1 to phosphorylate eIF4E. EMBO J. 18, 270–279 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Waskiewicz, A.J. et al. Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol. Cell. Biol. 19, 1871–1880 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Buxade, M. et al. The Mnks are novel components in the control of TNFα biosynthesis and phosphorylate and regulate hnRNP A1. Immunity 23, 177–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Esnault, S. et al. Pin1 modulates the type 1 immune response. PLoS ONE 2, e226 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Shen, Z.J., Esnault, S. & Malter, J.S. The peptidyl-prolyl isomerase Pin1 regulates the stability of granulocyte-macrophage colony-stimulating factor mRNA in activated eosinophils. Nat. Immunol. 6, 1280–1287 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Esnault, S. et al. A critical role for Pin1 in allergic pulmonary eosinophilia in rats. J. Allergy Clin. Immunol. 120, 1082–1088 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Greenwald, R.J., Freeman, G.J. & Sharpe, A.H. The B7 family revisited. Annu. Rev. Immunol. 23, 515–548 (2005).

    Article  PubMed  CAS  Google Scholar 

  52. Sharpe, A.H., Wherry, E.J., Ahmed, R. & Freeman, G.J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 8, 239–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Lindstein, T., June, C.H., Ledbetter, J.A., Stella, G. & Thompson, C.B. Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244, 339–343 (1989).

    Article  CAS  PubMed  Google Scholar 

  54. Sanchez-Lockhart, M. & Miller, J. Engagement of CD28 outside of the immunological synapse results in up-regulation of IL-2 mRNA stability but not IL-2 transcription. J. Immunol. 176, 4778–4784 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Mestas, J., Crampton, S.P., Hori, T. & Hughes, C.C. Endothelial cell co-stimulation through OX40 augments and prolongs T cell cytokine synthesis by stabilization of cytokine mRNA. Int. Immunol. 17, 737–747 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, J.G. et al. LFA-1-dependent HuR nuclear export and cytokine mRNA stabilization in T cell activation. J. Immunol. 176, 2105–2113 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Stoecklin, G., Lu, M., Rattenbacher, B. & Moroni, C. A constitutive decay element promotes tumor necrosis factor α mRNA degradation via an AU-rich element-independent pathway. Mol. Cell. Biol. 23, 3506–3515 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brown, C.Y., Lagnado, C.A. & Goodall, G.J. A cytokine mRNA-destabilizing element that is structurally and functionally distinct from A+U-rich elements. Proc. Natl. Acad. Sci. USA 93, 13721–13725 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shim, J. & Lim, H. J, R.Y. & Karin, M. Nuclear export of NF90 is required for interleukin-2 mRNA stabilization. Mol. Cell 10, 1331–1344 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Chen, C.Y. et al. Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev. 14, 1236–1248 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jing, Q. et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120, 623–634 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Pillai, R.S., Artus, C.G. & Filipowicz, W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10, 1518–1525 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vasudevan, S., Tong, Y. & Steitz, J.A. Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Vasudevan, S. & Steitz, J.A. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128, 1105–1118 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. O'Connell, R.M., Taganov, K.D., Boldin, M.P., Cheng, G. & Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl. Acad. Sci. USA 104, 1604–1609 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thai, T.H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Vigorito, E. et al. MicroRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27, 847–859 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leung, A.K., Calabrese, J.M. & Sharp, P.A. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc. Natl. Acad. Sci. USA 103, 18125–18130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, J. et al. A role for the P-body component GW182 in microRNA function. Nat. Cell Biol. 7, 1161–1166 (2005).

    Article  CAS  Google Scholar 

  71. Liu, J., Valencia-Sanchez, M.A., Hannon, G.J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. 7, 719–723 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Anderson, P. & Kedersha, N. Stress granules: the Tao of RNA triage. Trends Biochem. Sci. published online 19 February 2008 (doi:10.1016/j.tibs.2007.12.003).

    Article  CAS  PubMed  Google Scholar 

  73. Parker, R. & Sheth, U. P bodies and the control of mRNA translation and degradation. Mol. Cell 25, 635–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Kedersha, N. et al. Stress granules and processing bodies are dynamically liked sites of mRNP remodeling. J. Cell Biol. 169, 871–884 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stohr, N. et al. ZBP1 regulates mRNA stability during cellular stress. J. Cell Biol. 175, 527–534 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Franks, T.M. & Lykke-Andersen, J. TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes Dev. 21, 719–735 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stoecklin, G. & Anderson, P. In a tight spot: ARE-mRNAs at processing bodies. Genes Dev. 21, 627–631 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Bhattacharyya, S.N., Habermacher, R., Martine, U., Closs, E.I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Scheu, S. et al. Activation of the integrated stress response during T helper cell differentiation. Nat. Immunol. 7, 644–651 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Vinuesa, C.G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Yu, D. et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator mRNA. Nature 450, 299–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Munn, D.H. et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22, 633–642 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. MacKenzie, C.R., Heseler, K., Muller, A. & Daubener, W. Role of indoleamine 2,3-dioxygenase in antimicrobial defence and immuno-regulation: tryptophan depletion versus production of toxic kynurenines. Curr. Drug Metab. 8, 237–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Munn, D.H. & Mellor, A.L. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest. 117, 1147–1154 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sedlmayr, P. Indoleamine 2,3-dioxygenase in materno-fetal interaction. Curr. Drug Metab. 8, 205–208 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Gaestel, M., Mengel, A., Bothe, U. & Asadullah, K. Protein kinases as small molecule inhibitor targets in inflammation. Curr. Med. Chem. 14, 2214–2234 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Schett, G., Zwerina, J. & Firestein, G. The p38 mitogen activated protein kinase (MAPK) pathway in rheumatoid arthritis. Ann. Rheum. Dis., published online 7 September 2007 (doi:10.1136/ard.2007.074278).

    Article  PubMed  CAS  Google Scholar 

  88. Johansen, C. et al. Protein expression of TNF-α in psoriatic skin is regulated at a posttranscriptional level by MAPK-activated protein kinase 2. J. Immunol. 176, 1431–1438 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Hegen, M., Gaestel, M., Nickerson-Nutter, C.L., Lin, L.L. & Telliez, J.B. MAPKAP kinase 2-deficient mice are resistant to collagen-induced arthritis. J. Immunol. 177, 1913–1917 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Ding, C. Drug evaluation: VX-702, a MAP kinase inhibitor for rheumatoid arthritis and acute coronary syndrome. Curr. Opin. Investig. Drugs 7, 1020–1025 (2006).

    CAS  PubMed  Google Scholar 

  91. Schreiber, S. et al. Oral p38 mitogen-activated protein kinase inhibition with BIRB 796 for active Crohn's disease: a randomized, double-blind, placebo-controlled trial. Clin. Gastroenterol. Hepatol. 4, 325–334 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Esnault, S., Shen, Z.J., Whitesel, E. & Malter, J.S. The peptidyl-prolyl isomerase Pin1 regulates granulocyte-macrophage colony-stimulating factor mRNA stability in T lymphocytes. J. Immunol. 177, 6999–7006 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Chen, Y.L. et al. Differential regulation of ARE-mediated TNFα and IL-1β mRNA stability by lipopolysaccharide in RAW264.7 cells. Biochem. Biophys. Res. Commun. 346, 160–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Bufler, P., Gamboni-Robertson, F., Azam, T., Kim, S.H. & Dinarello, C.A. Interleukin-1 homologues IL-1F7b and IL-18 contain functional mRNA instability elements within the coding region responsive to lipopolysaccharide. Biochem. J. 381, 503–510 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ogilvie, R.L. et al. Tristetraprolin down-regulates IL-2 gene expression through AU-rich element-mediated mRNA decay. J. Immunol. 174, 953–961 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Shi, L., Godfrey, W., Lin, J., Zhao, G. & Kao, P. NF90 regulates inducible IL-2 gene expression in T cells. J. Exp. Med. 204, 971–977 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Stoecklin, G., Ming, X.F., Looser, R. & Moroni, C. Somatic mRNA turnover mutants implicate tristetraprolin in the interleukin-3 mRNA degradation pathway. Mol. Cell. Biol. 20, 3753–3763 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yarovinsky, T.O., Butler, N.S., Monick, M.M. & Hunninghake, G.W. Early exposure to IL-4 stabilizes IL-4 mRNA in CD4+ T cells via RNA-binding protein HuR. J. Immunol. 177, 4426–4435 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Neininger, A. et al. MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J. Biol. Chem. 277, 3065–3068 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Paschoud, S. et al. Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Mol. Cell. Biol. 26, 8228–8241 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Winzen, R. et al. Functional analysis of KSRP interaction with the AU-rich element of interleukin-8 and identification of inflammatory mRNA targets. Mol. Cell. Biol. 27, 8388–8400 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bamba, S. et al. Regulation of IL-11 expression in intestinal myofibroblasts: role of c-Jun AP-1- and MAPK-dependent pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G529–G538 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Carballo, E., Lai, W.S. & Blackshear, P.J. Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95, 1891–1899 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Grosset, C. et al. In vivo studies of translational repression mediated by the granulocyte-macrophage colony-stimulating factor AU-rich element. J. Biol. Chem. 279, 13354–13362 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Putland, R.A. et al. RNA destabilization by the granulocyte colony-stimulating factor stem-loop destabilizing element involves a single stem-loop that promotes deadenylation. Mol. Cell. Biol. 22, 1664–1673 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Whittemore, L.A. & Maniatis, T. Postinduction turnoff of β-interferon gene expression. Mol. Cell. Biol. 10, 1329–1337 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mavropoulos, A., Sully, G., Cope, A.P. & Clark, A.R. Stabilization of IFN-γ mRNA by MAPK p38 in IL-12- and IL-18-stimulated human NK cells. Blood 105, 282–288 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank G. Stoecklin and N. Kedersha for critical review of the manuscript. Supported by the National Institutes of Health and the American College of Rheumatology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, P. Post-transcriptional control of cytokine production. Nat Immunol 9, 353–359 (2008). https://doi.org/10.1038/ni1584

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1584

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing