Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation–mediated apoptosis of effector CD4+ T cells

Abstract

A key issue in mammalian immunology is how CD4+CD25+Foxp3+ regulatory T cells (Treg cells) suppress immune responses. Here we show that Treg cells induced apoptosis of effector CD4+ T cells in vitro and in vivo in a mouse model of inflammatory bowel disease. Treg cells did not affect the early activation or proliferation of effector CD4+ T cells. Cytokines that signal through the common γ-chain suppressed Treg cell–induced apoptosis. Treg cell–induced effector CD4+ T cell death required the proapoptotic protein Bim, and effector CD4+ T cells incubated with Treg cells showed less activation of the prosurvival kinase Akt and less phosphorylation of the proapoptotic protein Bad. Thus, cytokine deprivation–induced apoptosis is a prominent mechanism by which Treg cells inhibit effector T cell responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treg cells induce apoptosis of responder T cells in vitro.
Figure 2: Features of Treg cell–induced apoptosis.
Figure 3: Treg cell–induced apoptosis is associated with suppression of cytokine-dependent Akt1 and phosphorylated Bad signaling in responder T cells.
Figure 4: Loss of IL-2 accumulation in cocultures of Treg cells and responder T cell is not due to less IL-2 production by responder T cells.
Figure 5: Cytokine deprivation–induced apoptosis is caused by IL-2 consumption by Treg cells.
Figure 6: Bim-deficient responder T cells are resistant to Treg cell–mediated suppression.
Figure 7: Treg cells ameliorate IBD by inducing apoptosis of colitogenic CD4+CD45RBhi cells.
Figure 8: Treg cells suppress IBD by inducing apoptosis of colitogenic cells in a Bim-dependent way.

Similar content being viewed by others

References

  1. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  4. Ono, M. et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. D'Cruz, L.M. & Klein, L. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat. Immunol. 6, 1152–1159 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Fontenot, J.D., Rasmussen, J.P., Gavin, M.A. & Rudensky, A.Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Maloy, K.J. & Powrie, F. Fueling regulation: IL-2 keeps CD4+ Treg cells fit. Nat. Immunol. 6, 1071–1072 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. von Boehmer, H. Mechanisms of suppression by suppressor T cells. Nat. Immunol. 6, 338–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Thornton, A.M. & Shevach, E.M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sojka, D.K., Hughson, A., Sukiennicki, T.L. & Fowell, D.J. Early kinetic window of target T cell susceptibility to CD25+ regulatory T cell activity. J. Immunol. 175, 7274–7280 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Klein, L., Khazaie, K. & von Boehmer, H. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc. Natl. Acad. Sci. USA 100, 8886–8891 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thornton, A.M. & Shevach, E.M. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol. 164, 183–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Asseman, C., Mauze, S., Leach, M.W., Coffman, R.L. & Powrie, F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 190, 995–1004 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fahlen, L. et al. T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 737–746 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kullberg, M.C. et al. TGF-beta1 production by CD4+CD25+ regulatory T cells is not essential for suppression of intestinal inflammation. Eur. J. Immunol. 35, 2886–2895 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Kataoka, H. et al. CD25+CD4+ regulatory T cells exert in vitro suppressive activity independent of CTLA-4. Int. Immunol. 17, 421–427 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Thornton, A.M., Piccirillo, C.A. & Shevach, E.M. Activation requirements for the induction of CD4+CD25+ T cell suppressor function. Eur. J. Immunol. 34, 366–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Asseman, C., Read, S. & Powrie, F. Colitogenic Th1 cells are present in the antigen-experienced T cell pool in normal mice: control by CD4+ regulatory T cells and IL-10. J. Immunol. 171, 971–978 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Read, S. et al. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J. Immunol. 177, 4376–4383 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Lenardo, M.J. Interleukin-2 programs mouse αβ T lymphocytes for apoptosis. Nature 353, 858–861 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Zheng, L., Trageser, C.L., Willerford, D.M. & Lenardo, M.J. T cell growth cytokines cause the superinduction of molecules mediating antigen-induced T lymphocyte death. J. Immunol. 160, 763–769 (1998).

    CAS  PubMed  Google Scholar 

  23. Lenardo, M. et al. Mature T lymphocyte apoptosis–immune regulation in a dynamic and unpredictable antigenic environment. Annu. Rev. Immunol. 17, 221–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Gondek, D.C., Lu, L.F., Quezada, S.A., Sakaguchi, S. & Noelle, R.J. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol. 174, 1783–1786 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Grossman, W.J. et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589–601 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Pace, L., Pioli, C. & Doria, G. IL-4 modulation of CD4+CD25+ T regulatory cell-mediated suppression. J. Immunol. 174, 7645–7653 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Ahmed, N.N., Grimes, H.L., Bellacosa, A., Chan, T.O. & Tsichlis, P.N. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc. Natl. Acad. Sci. USA 94, 3627–3632 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Datta, S.R., Brunet, A. & Greenberg, M.E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Strasser, A. et al. The role of bim, a proapoptotic BH3-only member of the Bcl-2 family in cell-death control. Ann. NY Acad. Sci. 917, 541–548 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Datta, S.R. et al. Akt phosphorylation of Bad couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Barthlott, T. et al. CD25+CD4+ T cells compete with naive CD4+ T cells for IL-2 and exploit it for the induction of IL-10 production. Int. Immunol. 17, 279–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. de la Rosa, M., Rutz, S., Dorninger, H. & Scheffold, A. Interleukin-2 is essential for CD4++CD25+ regulatory T cell function. Eur. J. Immunol. 34, 2480–2488 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Lindstein, T., June, C.H., Ledbetter, J.A., Stella, G. & Thompson, C.B. Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244, 339–343 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Thornton, A.M., Donovan, E.E., Piccirillo, C.A. & Shevach, E.M. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J. Immunol. 172, 6519–6523 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Harnaha, J. et al. Interleukin-7 is a survival factor for CD4+CD25+ T-cells and is expressed by diabetes-suppressive dendritic cells. Diabetes 55, 158–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Sojka, D.K., Bruniquel, D., Schwartz, R.H. & Singh, N.J. IL-2 secretion by CD4+ T cells in vivo is rapid, transient, and influenced by TCR-specific competition. J. Immunol. 172, 6136–6143 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Uhlig, H.H. et al. Characterization of Foxp3+CD4+CD25+ and IL-10-secreting CD4+CD25+ T cells during cure of colitis. J. Immunol. 177, 5852–5860 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Mottet, C., Uhlig, H.H. & Powrie, F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J. Immunol. 170, 3939–3943 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Makita, S. et al. Intestinal lamina propria retaining CD4+CD25+ regulatory T cells is a suppressive site of intestinal inflammation. J. Immunol. 178, 4937–4946 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Tang, Q. et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol. 7, 83–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Strasser, A. The role of BH3-only proteins in the immune system. Nat. Rev. Immunol. 5, 189–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Scheffold, A., Huhn, J. & Hofer, T. Regulation of CD4+CD25+ regulatory T cell activity: it takes (IL-)two to tango. Eur. J. Immunol. 35, 1336–1341 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Tadokoro, C.E. et al. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J. Exp. Med. 203, 505–511 (2006), Epub 2006 Mar 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mempel, T.R. et al. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25, 129–141 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Martin, B. et al. Suppression of CD4+ T lymphocyte effector functions by CD4+CD25+ cells in vivo. J. Immunol. 172, 3391–3398 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Schimpl, A. et al. IL-2 and autoimmune disease. Cytokine Growth Factor Rev. 13, 369–378 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wildey, G.M., Patil, S. & Howe, P.H. Smad3 potentiates transforming growth factor β (TGFβ)-induced apoptosis and expression of the BH3-only protein Bim in WEHI 231 B lymphocytes. J. Biol. Chem. 278, 18069–18077 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Rudensky, A.Y. & Campbell, D.J. In vivo sites and cellular mechanisms of Treg cell-mediated suppression. J. Exp. Med. 203, 489–492 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Germain, R. Schwartz, N. Singh, B. Paul, E. Shevach, R. Siegel, A. Singer, S. Saravanamuthu, D. Simon, H. Su, L. Yu, N. Bidere, C. Trageser, J. Lee, A. Snow and other members of the Lenardo laboratory for suggestions and help; O. Schwartz, M. Czapiga and L. Koo for help in confocal microscopy; and K. Nagashima for assistance in electron microscopy. Spleens from Prf1−/− and gld mice (BALB/c) were from T. Sayers and A. Shanker (National Cancer Institute); Bcl-2 transgenic (CD45.1+) mice were from A. Singer (National Cancer Institute); and spleens from Bim-deficient mice (C57BL/6) were obtained from S. Durum and W. Li (National Cancer Institute). Supported by the intramural research program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health; the National Institutes of Health–University of Pennsylvania Immunology graduate partnership program (J.R.); and the National Academy of Sciences/National Research Council (P.P.).

Author information

Authors and Affiliations

Authors

Contributions

P.P. designed the study, did experiments and analyzed data with the direction and supervision of M.J.L.; M.J.L. and P.P. wrote the manuscript; L.Z. did ELISAs, analyzed the data and contributed to discussions; S.I. did real-time PCR and analyzed the data; and J.R. helped P.P. in sorting cells for some experiments.

Corresponding author

Correspondence to Michael J Lenardo.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Discussion and Methods (PDF 2733 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandiyan, P., Zheng, L., Ishihara, S. et al. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation–mediated apoptosis of effector CD4+ T cells. Nat Immunol 8, 1353–1362 (2007). https://doi.org/10.1038/ni1536

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1536

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing