Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genotoxic stress regulates expression of the proto-oncogene Bcl6 in germinal center B cells

Abstract

Antigen-specific B cells are selected in germinal centers, the structure in which these cells proliferate while accomplishing genome-remodeling processes such as class-switch recombination and somatic hypermutation. These events are associated with considerable genotoxic stress, which cells tolerate through suppression of DNA-damage responses by Bcl-6, a transcription factor required for the formation of germinal centers. Here we show that the expression of Bcl-6 is regulated by DNA damage through a signaling pathway that promotes Bcl-6 degradation. After DNA damage accumulated, the kinase ATM promoted Bcl-6 phosphorylation, leading to its interaction with the isomerase Pin1 and its degradation by the ubiquitin-proteasome system. Because Bcl-6 is required for the maintenance of germinal centers, our findings suggest that the extent of genotoxic stress controls the fate of germinal center B cells by means of Bcl-6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA damage induces Bcl-6 downregulation in B cells.
Figure 2: DNA damage–induced phosphorylation of Bcl-6 and protein degradation.
Figure 3: Pin1 interacts with Bcl-6.
Figure 4: The interaction of Bcl-6 with Pin1 is enhanced after genotoxic insults and is required for DNA damage–induced degradation.
Figure 5: Increased germinal center formation in Pin1−/− mice immunized with sheep red blood cells.

Similar content being viewed by others

References

  1. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    Article  CAS  Google Scholar 

  2. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  Google Scholar 

  3. Kuppers, R. & Dalla-Favera, R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20, 5580–5594 (2001).

    Article  CAS  Google Scholar 

  4. Ye, B.H. et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262, 747–750 (1993).

    Article  CAS  Google Scholar 

  5. Ye, B.H. et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat. Genet. 16, 161–170 (1997).

    Article  CAS  Google Scholar 

  6. Dent, A.L., Shaffer, A.L., Yu, X., Allman, D. & Staudt, L.M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589–592 (1997).

    Article  CAS  Google Scholar 

  7. Chang, C.C., Ye, B.H., Chaganti, R.S. & Dalla-Favera, R. BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc. Natl. Acad. Sci. USA 93, 6947–6952 (1996).

    Article  CAS  Google Scholar 

  8. Seyfert, V.L., Allman, D., He, Y. & Staudt, L.M. Transcriptional repression by the proto-oncogene BCL-6. Oncogene 12, 2331–2342 (1996).

    CAS  PubMed  Google Scholar 

  9. Dhordain, P. et al. The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Res. 26, 4645–4651 (1998).

    Article  CAS  Google Scholar 

  10. Fujita, N. et al. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell 119, 75–86 (2004).

    Article  CAS  Google Scholar 

  11. Huynh, K.D. & Bardwell, V.J. The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene 17, 2473–2484 (1998).

    Article  CAS  Google Scholar 

  12. Cattoretti, G. et al. BCL-6 protein is expressed in germinal-center B cells. Blood 86, 45–53 (1995).

    CAS  PubMed  Google Scholar 

  13. Shaffer, A.L. et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13, 199–212 (2000).

    Article  CAS  Google Scholar 

  14. Niu, H., Cattoretti, G. & Dalla-Favera, R. BCL6 controls the expression of the B7–1/CD80 costimulatory receptor in germinal center B cells. J. Exp. Med. 198, 211–221 (2003).

    Article  CAS  Google Scholar 

  15. Polo, J.M. et al. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat. Med. 10, 1329–1335 (2004).

    Article  CAS  Google Scholar 

  16. Tunyaplin, C. et al. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J. Immunol. 173, 1158–1165 (2004).

    Article  CAS  Google Scholar 

  17. Niu, H., Ye, B.H. & Dalla-Favera, R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev. 12, 1953–1961 (1998).

    Article  CAS  Google Scholar 

  18. Allman, D. et al. BCL-6 expression during B-cell activation. Blood 87, 5257–5268 (1996).

    CAS  PubMed  Google Scholar 

  19. Bereshchenko, O.R., Gu, W. & Dalla-Favera, R. Acetylation inactivates the transcriptional repressor BCL6. Nat. Genet. 32, 606–613 (2002).

    Article  CAS  Google Scholar 

  20. Dalla-Favera, R. et al. Molecular pathogenesis of B cell malignancy: the role of BCL-6. Curr. Top. Microbiol. Immunol. 246, 257–263 (1999).

    CAS  PubMed  Google Scholar 

  21. Ye, B.H. et al. Chromosomal translocations cause deregulated BCL6 expression by promoter substitution in B cell lymphoma. EMBO J. 14, 6209–6217 (1995).

    Article  CAS  Google Scholar 

  22. Chen, W., Iida, S., Louie, D.C., Dalla-Favera, R. & Chaganti, R.S. Heterologous promoters fused to BCL6 by chromosomal translocations affecting band 3q27 cause its deregulated expression during B-cell differentiation. Blood 91, 603–607 (1998).

    CAS  PubMed  Google Scholar 

  23. Shen, H.M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752 (1998).

    Article  CAS  Google Scholar 

  24. Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl. Acad. Sci. USA 95, 11816–11821 (1998).

    Article  CAS  Google Scholar 

  25. Pasqualucci, L. et al. Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood 101, 2914–2923 (2003).

    Article  CAS  Google Scholar 

  26. Wang, X., Li, Z., Naganuma, A. & Ye, B.H. Negative autoregulation of BCL-6 is bypassed by genetic alterations in diffuse large B cell lymphomas. Proc. Natl. Acad. Sci. USA 99, 15018–15023 (2002).

    Article  CAS  Google Scholar 

  27. Cattoretti, G. et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 7, 445–455 (2005).

    Article  CAS  Google Scholar 

  28. Phan, R.T. & Dalla-Favera, R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 432, 635–639 (2004).

    Article  CAS  Google Scholar 

  29. Phan, R.T., Saito, M., Basso, K., Niu, H. & Dalla-Favera, R. BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nat. Immunol. 6, 1054–1060 (2005).

    Article  CAS  Google Scholar 

  30. Ranuncolo, S.M. et al. Bcl-6 mediates the germinal center B cell phenotype and lymphomagenesis through transcriptional repression of the DNA-damage sensor ATR. Nat. Immunol. 8, 705–714 (2007).

    Article  CAS  Google Scholar 

  31. Lavin, M.F. & Kozlov, S. ATM activation and DNA damage response. Cell Cycle 6, 931–942 (2007).

    Article  CAS  Google Scholar 

  32. Shiloh, Y. The ATM-mediated DNA-damage response: taking shape. Trends Biochem. Sci. 31, 402–410 (2006).

    Article  CAS  Google Scholar 

  33. Liu, Y.J. et al. Mechanism of antigen-driven selection in germinal centres. Nature 342, 929–931 (1989).

    Article  CAS  Google Scholar 

  34. Liu, Y.J. et al. Germinal center cells express bcl-2 protein after activation by signals which prevent their entry into apoptosis. Eur. J. Immunol. 21, 1905–1910 (1991).

    Article  CAS  Google Scholar 

  35. Basso, K. et al. Tracking CD40 signaling during germinal center development. Blood 104, 4088–4096 (2004).

    Article  CAS  Google Scholar 

  36. Zhou, B.B. & Elledge, S.J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    Article  CAS  Google Scholar 

  37. Hickson, I. et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64, 9152–9159 (2004).

    Article  CAS  Google Scholar 

  38. Matsuoka, S., Huang, M. & Elledge, S.J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893–1897 (1998).

    Article  CAS  Google Scholar 

  39. Yaffe, M.B. et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278, 1957–1960 (1997).

    Article  CAS  Google Scholar 

  40. Lu, P.J., Zhou, X.Z., Shen, M. & Lu, K.P. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283, 1325–1328 (1999).

    Article  CAS  Google Scholar 

  41. Atchison, F.W., Capel, B. & Means, A.R. Pin1 regulates the timing of mammalian primordial germ cell proliferation. Development 130, 3579–3586 (2003).

    Article  CAS  Google Scholar 

  42. Liou, Y.C. et al. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc. Natl. Acad. Sci. USA 99, 1335–1340 (2002).

    Article  CAS  Google Scholar 

  43. Jazayeri, A. et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol. 8, 37–45 (2006).

    Article  CAS  Google Scholar 

  44. Theard, D., Coisy, M., Ducommun, B., Concannon, P. & Darbon, J.M. Etoposide and adriamycin but not genistein can activate the checkpoint kinase Chk2 independently of ATM/ATR. Biochem. Biophys. Res. Commun. 289, 1199–1204 (2001).

    Article  CAS  Google Scholar 

  45. Kotlyarov, A. et al. MAPKAP kinase 2 is essential for LPS-induced TNF-α biosynthesis. Nat. Cell Biol. 1, 94–97 (1999).

    Article  CAS  Google Scholar 

  46. Lu, K.P. Prolyl isomerase Pin1 as a molecular target for cancer diagnostics and therapeutics. Cancer Cell 4, 175–180 (2003).

    Article  CAS  Google Scholar 

  47. Yeh, E. et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat. Cell Biol. 6, 308–318 (2004).

    Article  CAS  Google Scholar 

  48. Zacchi, P. et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853–857 (2002).

    Article  CAS  Google Scholar 

  49. Zheng, H. et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419, 849–853 (2002).

    Article  CAS  Google Scholar 

  50. Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148 (2001).

    Article  CAS  Google Scholar 

  51. Gu, W. & Roeder, R.G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    Article  CAS  Google Scholar 

  52. Gumy-Pause, F., Wacker, P. & Sappino, A.P. ATM gene and lymphoid malignancies. Leukemia 18, 238–242 (2004).

    Article  CAS  Google Scholar 

  53. Lois, C., Hong, E.J., Pease, S., Brown, E.J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

    Article  CAS  Google Scholar 

  54. Klein, U. et al. Transcriptional analysis of the B cell germinal center reaction. Proc. Natl. Acad. Sci. USA 100, 2639–2644 (2003).

    Article  CAS  Google Scholar 

  55. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Le, M. Uranishi, Q. Shen, P.M. Smith and T. Mo for technical support; I. Schieren for help in cell sorting; G. Cattoretti for pathology consultation in the analysis of Pin1−/− mice; A. Melnick and S. Ranuncolo for discussions; and R. Baer, L. Pasqualucci and D. Dominguez-Sola for discussions and critical reading of the manuscript. Supported by the National Institutes of Health (R.T.P. and R.D.-F.) and the Leukemia Lymphoma Society (Specialized Center of Research Grant).

Author information

Authors and Affiliations

Authors

Contributions

R.T.P. and M.S. did the experiments in Figures 1,2,3,4,5 (R.T.P.) and Figures 2d and 3a,b (M.S.); Y.K. isolated centroblasts from tonsil biopsies; A.R.M. provided Pin1−/− mice; and R.D.-F. provided project planning and supervision.

Corresponding author

Correspondence to Riccardo Dalla-Favera.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 513 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phan, R., Saito, M., Kitagawa, Y. et al. Genotoxic stress regulates expression of the proto-oncogene Bcl6 in germinal center B cells. Nat Immunol 8, 1132–1139 (2007). https://doi.org/10.1038/ni1508

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1508

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing