Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Redox regulation of peptide receptivity of major histocompatibility complex class I molecules by ERp57 and tapasin

Abstract

The function of the oxidoreductase ERp57 in the major histocompatibility complex (MHC) class I peptide-loading complex has remained elusive. Here we show that in the absence of tapasin, the α2 disulfide bond in the MHC class I peptide-binding groove was rapidly reduced. Covalent sequestration of ERp57 by tapasin was needed to protect the α2 disulfide bond against reduction and thus to maintain the binding groove in a peptide-receptive state. Allelic variations in MHC class I tapasin dependency reflected their susceptibility to reduction of the α2 disulfide bond. In the absence of sequestration, ERp57 acted directly on the α2 disulfide bond. Our work provides insight into how the immune system customizes 'quality control' in the endoplasmic reticulum to fit the needs of antigen presentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and characterization of MHC class I expression constructs optimized for redox analysis.
Figure 2: Tapasin Cys95 is required for the maintenance of HLA-B*4402 heavy chains in the fully oxidized state.
Figure 3: The tapasin-independent MHC class I allele HLA-B*4405 is resistant to α2 reduction.
Figure 4: Tapasin Cys95 protects HLA-B*4402 against disulfide exchange with ERp57.
Figure 5: Heavy chain–ERp57 conjugates are associated with CRT.
Figure 6: The formation of the CRT-associated heavy chain–ERp57 conjugate is suppressed by wild-type tapasin but not by the C95A mutant.
Figure 7: Depletion of ERp57 leads to less expression of heavy chain.

Similar content being viewed by others

References

  1. Pamer, E. & Cresswell, P. Mechanisms of MHC class I–restricted antigen processing. Annu. Rev. Immunol. 16, 323–358 (1998).

    Article  CAS  Google Scholar 

  2. Bouvier, M. Accessory proteins and the assembly of human class I MHC molecules: a molecular and structural perspective. Mol. Immunol. 39, 697–706 (2003).

    Article  CAS  Google Scholar 

  3. Bjorkman, P.J. et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329, 506–512 (1987).

    Article  CAS  Google Scholar 

  4. Dick, T.P. Assembly of MHC class I peptide complexes from the perspective of disulfide bond formation. Cell. Mol. Life Sci. 61, 547–556 (2004).

    Article  CAS  Google Scholar 

  5. Cresswell, P., Ackerman, A.L., Giodini, A., Peaper, D.R. & Wearsch, P.A. Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol. Rev. 207, 145–157 (2005).

    Article  CAS  Google Scholar 

  6. Momburg, F. & Tan, P. Tapasin-the keystone of the loading complex optimizing peptide binding by MHC class I molecules in the endoplasmic reticulum. Mol. Immunol. 39, 217–233 (2002).

    Article  CAS  Google Scholar 

  7. Garbi, N., Tanaka, S., van den Broek, M., Momburg, F. & Hammerling, G.J. Accessory molecules in the assembly of major histocompatibility complex class I/peptide complexes: how essential are they for CD8+ T-cell immune responses? Immunol. Rev. 207, 77–88 (2005).

    Article  CAS  Google Scholar 

  8. Ribaudo, R.K. & Margulies, D.H. Independent and synergistic effects of disulfide bond formation, β2-microglobulin, and peptides on class I MHC folding and assembly in an in vitro translation system. J. Immunol. 149, 2935–2944 (1992).

    CAS  PubMed  Google Scholar 

  9. Wang, H., Capps, G.G., Robinson, B.E. & Zuniga, M.C. Ab initio association with β2-microglobulin during biosynthesis of the H-2Ld class I major histocompatibility complex heavy chain promotes proper disulfide bond formation and stable peptide binding. J. Biol. Chem. 269, 22276–22281 (1994).

    CAS  PubMed  Google Scholar 

  10. Smith, J.D., Solheim, J.C., Carreno, B.M. & Hansen, T.H. Characterization of class I MHC folding intermediates and their disparate interactions with peptide and β2-microglobulin. Mol. Immunol. 32, 531–540 (1995).

    Article  CAS  Google Scholar 

  11. Tector, M., Zhang, Q. & Salter, R.D. Beta 2-microglobulin and calnexin can independently promote folding and disulfide bond formation in class I histocompatibility proteins. Mol. Immunol. 34, 401–408 (1997).

    Article  CAS  Google Scholar 

  12. Lewis, J.W. & Elliott, T. Evidence for successive peptide binding and quality control stages during MHC class I assembly. Curr. Biol. 8, 717–720 (1998).

    Article  CAS  Google Scholar 

  13. Antoniou, A.N. et al. The oxidoreductase ERp57 efficiently reduces partially folded in preference to fully folded MHC class I molecules. EMBO J. 21, 2655–2663 (2002).

    Article  CAS  Google Scholar 

  14. Dick, T.P., Bangia, N., Peaper, D.R. & Cresswell, P. Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. Immunity 16, 87–98 (2002).

    Article  CAS  Google Scholar 

  15. Peaper, D.R., Wearsch, P.A. & Cresswell, P. Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex. EMBO J. 24, 3613–3623 (2005).

    Article  CAS  Google Scholar 

  16. Williams, A.P., Peh, C.A., Purcell, A.W., McCluskey, J. & Elliott, T. Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity 16, 509–520 (2002).

    Article  CAS  Google Scholar 

  17. Keefe, A.D., Wilson, D.S., Seelig, B. & Szostak, J.W. One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr. Purif. 23, 440–446 (2001).

    Article  CAS  Google Scholar 

  18. Grandea, A.G., Lehner, P.J., Cresswell, P. & Spies, T. Regulation of MHC class I heterodimer stability and interaction with TAP by tapasin. Immunogenetics 46, 477–483 (1997).

    Article  CAS  Google Scholar 

  19. Steinle, A. & Schendel, D.J. HLA class I alleles of LCL 721 and 174 x CEM.T2 (T2). Tissue Antigens 44, 268–270 (1994).

    Article  CAS  Google Scholar 

  20. Zernich, D. et al. Natural HLA class I polymorphism controls the pathway of antigen presentation and susceptibility to viral evasion. J. Exp. Med. 200, 13–24 (2004).

    Article  CAS  Google Scholar 

  21. Park, B. et al. Redox regulation facilitates optimal peptide selection by MHC class I during antigen processing. Cell 127, 369–382 (2006).

    Article  CAS  Google Scholar 

  22. Stam, N., Spits, H. & Ploegh, H. Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. J. Immunol. 137, 2299–2306 (1986).

    CAS  PubMed  Google Scholar 

  23. Sadasivan, B., Lehner, P.J., Ortmann, B., Spies, T. & Cresswell, P. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5, 103–114 (1996).

    Article  CAS  Google Scholar 

  24. Ortmann, B., Androlewicz, M.J. & Cresswell, P. MHC class I/β2-microglobulin complexes associate with TAP transporters before peptide binding. Nature 368, 864–867 (1994).

    Article  CAS  Google Scholar 

  25. Dick, T.P. & Cresswell, P. Thiol oxidation and reduction in major histocompatibility complex class I-restricted antigen processing and presentation. Methods Enzymol. 348, 49–54 (2002).

    Article  CAS  Google Scholar 

  26. Garbi, N., Tanaka, S., Momburg, F. & Hammerling, G.J. Impaired assembly of the major histocompatibility complex class I peptide-loading complex in mice deficient in the oxidoreductase ERp57. Nat. Immunol. 7, 93–102 (2006).

    Article  CAS  Google Scholar 

  27. Lindquist, J.A., Jensen, O.N., Mann, M. & Hammerling, G.J. ER-60, a chaperone with thiol-dependent reductase activity involved in MHC class I assembly. EMBO J. 17, 2186–2195 (1998).

    Article  CAS  Google Scholar 

  28. Solda, T., Garbi, N., Hammerling, G.J. & Molinari, M. Consequences of ERp57 deletion on oxidative folding of obligate and facultative clients of the calnexin cycle. J. Biol. Chem. 281, 6219–6226 (2006).

    Article  CAS  Google Scholar 

  29. Helenius, A. & Aebi, M. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004).

    Article  CAS  Google Scholar 

  30. Jessop, C.E. & Bulleid, N.J. Glutathione directly reduces an oxidoreductase in the endoplasmic reticulum of mammalian cells. J. Biol. Chem. 279, 55341–55347 (2004).

    Article  CAS  Google Scholar 

  31. Mezghrani, A. et al. Manipulation of oxidative protein folding and PDI redox state in mammalian cells. EMBO J. 20, 6288–6296 (2001).

    Article  CAS  Google Scholar 

  32. Ellgaard, L. & Helenius, A. ER quality control: towards an understanding at the molecular level. Curr. Opin. Cell Biol. 13, 431–437 (2001).

    Article  CAS  Google Scholar 

  33. Howarth, M., Williams, A., Tolstrup, A.B. & Elliott, T. Tapasin enhances MHC class I peptide presentation according to peptide half-life. Proc. Natl. Acad. Sci. USA 101, 11737–11742 (2004).

    Article  CAS  Google Scholar 

  34. Zhang, Y., Baig, E. & Williams, D.B. Functions of ERp57 in the folding and assembly of major histocompatibility complex class I molecules. J. Biol. Chem. 281, 14622–14631 (2006).

    Article  CAS  Google Scholar 

  35. Zacharias, M. & Springer, S. Conformational flexibility of the MHC class I α1-α2 domain in peptide bound and free states: a molecular dynamics simulation study. Biophys. J. 87, 2203–2214 (2004).

    Article  CAS  Google Scholar 

  36. Elliott, T. & Williams, A. The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex. Immunol. Rev. 207, 89–99 (2005).

    Article  CAS  Google Scholar 

  37. Santos, S.G. et al. MHC class I-ERp57-tapasin interactions within the peptide-loading complex. J. Biol. Chem. 282, 17587–17593 (2007).

    Article  CAS  Google Scholar 

  38. Kanaseki, T., Blanchard, N., Hammer, G.E., Gonzalez, F. & Shastri, N. ERAAP synergizes with MHC class I molecules to make the final cut in the antigenic peptide precursors in the endoplasmic reticulum. Immunity 25, 795–806 (2006).

    Article  CAS  Google Scholar 

  39. Greenwood, R., Shimizu, Y., Sekhon, G.S. & DeMars, R. Novel allele-specific, post-translational reduction in HLA class I surface expression in a mutant human B cell line. J. Immunol. 153, 5525–5536 (1994).

    CAS  PubMed  Google Scholar 

  40. Peh, C.A. et al. HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity 8, 531–542 (1998).

    Article  CAS  Google Scholar 

  41. Diedrich, G., Bangia, N., Pan, M. & Cresswell, P. A role for calnexin in the assembly of the MHC class I loading complex in the endoplasmic reticulum. J. Immunol. 166, 1703–1709 (2001).

    Article  CAS  Google Scholar 

  42. Lutz, P.M. & Cresswell, P. An epitope common to HLA class I and class II antigens, Ig light chains, and β2-microglobulin. Immunogenetics 25, 228–233 (1987).

    Article  CAS  Google Scholar 

  43. Tahara, T. et al. HLA antibody responses in HLA class I transgenic mice. Immunogenetics 32, 351–360 (1990).

    Article  CAS  Google Scholar 

  44. Call, M.E., Pyrdol, J., Wiedmann, M. & Wucherpfennig, K.W. The organizing principle in the formation of the T cell receptor-CD3 complex. Cell 111, 967–979 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Mader for expert technical assistance; F. Momburg, N. Garbi and N. Bangia (Roswell Park Cancer Institute) for discussions; and F. Momburg and P. Cresswell (Yale University) for reagents. Supported by the Deutsche Forschungsgemeinschaft (DI 731/2-1) and the European Commission (Marie Curie Excellence Grant).

Author information

Authors and Affiliations

Authors

Contributions

T.P.D. designed the research, supervised the experiments, analyzed data and wrote the manuscript; A.K. designed experiments, did most experiments, analyzed data and contributed to the writing of the manuscript; M.P. did PDI experiments; and M.W. contributed to ERp57 depletion experiments.

Corresponding author

Correspondence to Tobias P Dick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1890 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kienast, A., Preuss, M., Winkler, M. et al. Redox regulation of peptide receptivity of major histocompatibility complex class I molecules by ERp57 and tapasin. Nat Immunol 8, 864–872 (2007). https://doi.org/10.1038/ni1483

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1483

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing