Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plant NBS-LRR proteins in pathogen sensing and host defense

Abstract

Plant proteins belonging to the nucleotide-binding site–leucine-rich repeat (NBS-LRR) family are used for pathogen detection. Like the mammalian Nod-LRR protein 'sensors' that detect intracellular conserved pathogen-associated molecular patterns, plant NBS-LRR proteins detect pathogen-associated proteins, most often the effector molecules of pathogens responsible for virulence. Many virulence proteins are detected indirectly by plant NBS-LRR proteins from modifications the virulence proteins inflict on host target proteins. However, some NBS-LRR proteins directly bind pathogen proteins. Association with either a modified host protein or a pathogen protein leads to conformational changes in the amino-terminal and LRR domains of plant NBS-LRR proteins. Such conformational alterations are thought to promote the exchange of ADP for ATP by the NBS domain, which activates 'downstream' signaling, by an unknown mechanism, leading to pathogen resistance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NBS domain structure and location of informative substitutions in plant NBS-LRR proteins.
Figure 2: Model for plant NBS-LRR activation.

Similar content being viewed by others

References

  1. Chisholm, S.T., Coaker, G., Day, B. & Staskawicz, B.J. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814 (2006).

    Article  CAS  Google Scholar 

  2. Ausubel, F.M. Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 6, 973–979 (2005).

    Article  CAS  Google Scholar 

  3. Inohara. Chamaillard, McDonald, C. & Nunez, G. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu. Rev. Biochem. 74, 355–383 (2005).

    Article  CAS  Google Scholar 

  4. Pan, Q., Wendel, J. & Fluhr, R. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J. Mol. Evol. 50, 203–213 (2000).

    Article  CAS  Google Scholar 

  5. van der Biezen, E.A. & Jones, J.D.G. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem. Sci. 23, 454–456 (1998).

    Article  CAS  Google Scholar 

  6. Jia, Y., McAdams, S.A., Bryan, G.T., Hershey, H.P. & Valent, B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19, 4004–4014 (2000).

    Article  CAS  Google Scholar 

  7. Bryan, G.T. et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12, 2033–2046 (2000).

    Article  CAS  Google Scholar 

  8. Deslandes, L. et al. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc. Natl. Acad. Sci. USA 100, 8024–8029 (2003).

    Article  CAS  Google Scholar 

  9. Deslandes, L. et al. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc. Natl. Acad. Sci. USA 99, 2404–2409 (2002).

    Article  CAS  Google Scholar 

  10. Dodds, P.N. et al. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl. Acad. Sci. USA 103, 8888–8893 (2006).

    Article  CAS  Google Scholar 

  11. Grant, M.R. et al. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269, 843–846 (1995).

    Article  CAS  Google Scholar 

  12. Innes, R.W., Bent, A.F., Kunkel, B.N., Bisgrove, S.R. & Staskawicz, B.J. Molecular analysis of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J. Bacteriol. 175, 4859–4869 (1993).

    Article  CAS  Google Scholar 

  13. Bent, A.F. et al. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265, 1856–1860 (1994).

    Article  CAS  Google Scholar 

  14. Mindrinos, M., Katagiri, F., Yu, G.L. & Ausubel, F.M. The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78, 1089–1099 (1994).

    Article  CAS  Google Scholar 

  15. Axtell, M.J. & Staskawicz, B.J. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112, 369–377 (2003).

    Article  CAS  Google Scholar 

  16. Mackey, D., Holt, B.F.I., Wiig, A. & Dangl, J.L. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743–754 (2002).

    Article  CAS  Google Scholar 

  17. Coaker, G., Falick, A. & Staskawicz, B. Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science 308, 548–550 (2005).

    Article  CAS  Google Scholar 

  18. Day, B. et al. Molecular basis for the RIN4 negative regulation of RPS2 disease resistance. Plant Cell 17, 1292–1305 (2005).

    Article  CAS  Google Scholar 

  19. Kim, H.S. et al. The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. Proc. Natl. Acad. Sci. USA 102, 6496–6501 (2005).

    Article  CAS  Google Scholar 

  20. Belkhadir, Y., Nimchuk, Z., Hubert, D.A., Mackey, D. & Dangl, J.L. Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell 16, 2822–2835 (2004).

    Article  CAS  Google Scholar 

  21. Lim, M.T. & Kunkel, B.N. The Pseudomonas syringae type III effector AvrRpt2 promotes virulence independently of RIN4, a predicted virulence target in Arabidopsis thaliana. Plant J. 40, 790–798 (2004).

    Article  CAS  Google Scholar 

  22. Simonich, M.T. & Innes, R.W. A disease resistance gene in Arabidopsis with specificity for the avrPph3 gene of Pseudomonas syringae pv. phaseolicola. Mol. Plant Microbe Interact. 8, 637–640 (1995).

    Article  CAS  Google Scholar 

  23. Warren, R.F., Henk, A., Mowery, P., Holub, E. & Innes, R.W. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 10, 1439–1452 (1998).

    Article  CAS  Google Scholar 

  24. Swiderski, M.R. & Innes, R.W. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J. 26, 101–112 (2001).

    Article  CAS  Google Scholar 

  25. Shao, F. et al. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301, 1230–1233 (2003).

    Article  CAS  Google Scholar 

  26. Shao, F., Merritt, P.M., Bao, Z., Innes, R.W. & Dixon, J.E. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109, 575–588 (2002).

    Article  CAS  Google Scholar 

  27. Salmeron, J.M., Barker, S.J., Carland, F.M., Mehta, A.Y. & Staskawicz, B.J. Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition. Plant Cell 6, 511–520 (1994).

    Article  CAS  Google Scholar 

  28. Salmeron, J.M. et al. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86, 123–133 (1996).

    Article  CAS  Google Scholar 

  29. Pedley, K.F. & Martin, G.B. Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annu. Rev. Phytopathol. 41, 215–243 (2003).

    Article  CAS  Google Scholar 

  30. Martin, G.B. et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262, 1432–1436 (1993).

    Article  CAS  Google Scholar 

  31. Scofield, S.R. et al. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274, 2063–2065 (1996).

    Article  CAS  Google Scholar 

  32. Tang, X. et al. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274, 2060–2063 (1996).

    Article  CAS  Google Scholar 

  33. Mucyn, T.S. et al. The NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell advance online publication, 6 October 2006 (doi: 10.1105/tpc.106.044016).

  34. Kobe, B. & Deisenhofer, J. The leucine-rich repeat: a versatile binding motif. Trends Biochem. Sci. 19, 415–421 (1994).

    Article  CAS  Google Scholar 

  35. Michelmore, R.W. & Meyers, B.C. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8, 1113–1130 (1998).

    Article  CAS  Google Scholar 

  36. Ellis, J.G., Lawrence, G.J., Luck, J.E. & Dodds, P.N. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11, 495–506 (1999).

    Article  CAS  Google Scholar 

  37. Luck, J.E., Lawrence, G.J., Dodds, P.N., Shepherd, K.W. & Ellis, J.G. Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. Plant Cell 12, 1367–1377 (2000).

    Article  CAS  Google Scholar 

  38. Tao, Y., Yuan, F., Leister, R.T., Ausubel, F.M. & Katagiri, F. Mutational analysis of the Arabidopsis nucleotide binding site-leucine-rich repeat resistance gene RPS2. Plant Cell 12, 2541–2554 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Weaver, M.L., Swiderski, M.R., Li, Y. & Jones, J.D.G. The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis. Plant J. 47, 829–840 (2006).

    Article  CAS  Google Scholar 

  40. Bendahmane, A., Farnham, G., Moffett, P. & Baulcombe, D.C. Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. Plant J. 32, 195–204 (2002).

    Article  CAS  Google Scholar 

  41. Tanabe, T. et al. Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J. 23, 1587–1597 (2004).

    Article  CAS  Google Scholar 

  42. Inohara, N. et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J. Biol. Chem. 274, 14560–14567 (1999).

    Article  CAS  Google Scholar 

  43. Rairdan, G.J. & Moffett, P. Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18, 2082–2093 (2006).

    Article  CAS  Google Scholar 

  44. Hwang, C.F., Bhakta, A.V., Truesdell, G.M., Pudlo, W.M. & Williamson, V.M. Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant Cell 12, 1319–1329 (2000).

    Article  CAS  Google Scholar 

  45. Hwang, C.F. & Williamson, V.M. Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi. Plant J. 34, 585–593 (2003).

    Article  CAS  Google Scholar 

  46. Moffett, P., Farnham, G., Peart, J. & Baulcombe, D.C. Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J. 21, 4511–4519 (2002).

    Article  CAS  Google Scholar 

  47. Tameling, W.I. et al. Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiol. 140, 1233–1245 (2006).

    Article  CAS  Google Scholar 

  48. Lawrence, G.J., Finnegan, E.J., Ayliffe, M.A. & Ellis, J.G. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7, 1195–1206 (1995).

    Article  CAS  Google Scholar 

  49. Anderson, P.A. et al. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell 9, 641–651 (1997).

    Article  CAS  Google Scholar 

  50. Parker, J.E. et al. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell 9, 879–894 (1997).

    Article  CAS  Google Scholar 

  51. Ayliffe, M.A. et al. Analysis of alternative transcripts of the flax L6 rust resistance gene. Plant J. 17, 287–292 (1999).

    Article  CAS  Google Scholar 

  52. Dinesh-Kumar, S.P. & Baker, B.J. Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc. Natl. Acad. Sci. USA 97, 1908–1913 (2000).

    Article  CAS  Google Scholar 

  53. van der Biezen, E.A. & Jones, J.D.G. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol. 8, R226–R227 (1998).

    Article  CAS  Google Scholar 

  54. Takken, F.L., Albrecht, M. & Tameling, W.I. Resistance proteins: molecular switches of plant defence. Curr. Opin. Plant Biol. 9, 383–390 (2006).

    Article  CAS  Google Scholar 

  55. Meyers, B.C. et al. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 20, 317–332 (1999).

    Article  CAS  Google Scholar 

  56. Meyers, B.C., Kozik, A., Griego, A., Kuang, H. & Michelmore, R.W. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15, 809–834 (2003).

    Article  CAS  Google Scholar 

  57. Shirano, Y., Kachroo, P., Shah, J. & Klessig, D.F. A gain-of-function mutation in an Arabidopsis Toll interleukin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14, 3149–3162 (2002).

    Article  CAS  Google Scholar 

  58. de la Fuente van Bentem, S. et al. Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein. Plant J. 43, 284–298 (2005).

    Article  CAS  Google Scholar 

  59. Tornero, P., Chao, R.A., Luthin, W.N., Goff, S.A. & Dangl, J.L. Large-scale structure-function analysis of the Arabidopsis RPM1 disease resistance protein. Plant Cell 14, 435–450 (2002).

    Article  CAS  Google Scholar 

  60. Howles, P. et al. Autoactive alleles of the flax L6 rust resistance gene induce non-race-specific rust resistance associated with the hypersensitive response. Mol. Plant Microbe Interact. 18, 570–582 (2005).

    Article  CAS  Google Scholar 

  61. Riedl, S.J., Li, W., Chao, Y., Schwarzenbacher, R. & Shi, Y. Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434, 926–933 (2005).

    Article  CAS  Google Scholar 

  62. Yan, N. et al. Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. Nature 437, 831–837 (2005).

    Article  CAS  Google Scholar 

  63. Albrecht, M. & Takken, F.L. Update on the domain architectures of NLRs and R proteins. Biochem. Biophys. Res. Commun. 339, 459–462 (2006).

    Article  CAS  Google Scholar 

  64. Hu, Y., Benedict, M.A., Ding, L. & Nunez, G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J. 18, 3586–3595 (1999).

    Article  CAS  Google Scholar 

  65. Jiang, X. & Wang, X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J. Biol. Chem. 275, 31199–31203 (2000).

    Article  CAS  Google Scholar 

  66. Tameling, W.I. et al. The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14, 2929–2939 (2002).

    Article  CAS  Google Scholar 

  67. Sprang, S.R. G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66, 639–678 (1997).

    Article  CAS  Google Scholar 

  68. Schreiber, S., Rosenstiel, P., Albrecht, M., Hampe, J. & Krawczak, M. Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat. Rev. Genet. 6, 376–388 (2005).

    Article  CAS  Google Scholar 

  69. Aarts, N. et al. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc. Natl. Acad. Sci. USA 95, 10306–10311 (1998).

    Article  CAS  Google Scholar 

  70. Tao, X., Xu, Y., Zheng, Y., Beg, A.A. & Tong, L. An extensively associated dimer in the structure of the C713S mutant of the TIR domain of human TLR2. Biochem. Biophys. Res. Commun. 299, 216–221 (2002).

    Article  CAS  Google Scholar 

  71. Xu, Y. et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408, 111–115 (2000).

    Article  CAS  Google Scholar 

  72. Mestre, P. & Baulcombe, D.C. Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell 18, 491–501 (2006).

    Article  CAS  Google Scholar 

  73. Leister, R.T. et al. Molecular genetic evidence for the role of SGT1 in the intramolecular complementation of Bs2 protein activity in Nicotiana benthamiana. Plant Cell 17, 1268–1278 (2005).

    Article  CAS  Google Scholar 

  74. Leister, D. et al. Rapid reorganization of resistance gene homologues in cereal genomes. Proc. Natl. Acad. Sci. USA 95, 370–375 (1998).

    Article  CAS  Google Scholar 

  75. Zhang, Y., Goritschnig, S., Dong, X. & Li, X. A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1–1, constitutive 1. Plant Cell 15, 2636–2646 (2003).

    Article  CAS  Google Scholar 

  76. Pettersen, E.F. et al. UCSF Chimera — a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Rathjen for sharing a manuscript in the press. Supported by the US National Institutes of Health (GM046451 to R.W.I.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger W Innes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeYoung, B., Innes, R. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7, 1243–1249 (2006). https://doi.org/10.1038/ni1410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1410

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing