Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Maintenance and modulation of T cell polarity

Abstract

As T cells move through the lymphatics and tissues, chemokine receptors, adhesion molecules, costimulatory molecules and antigen receptors engage their ligands in the microenvironment and contribute to establishing and maintaining cell polarity. Cytoskeletal assemblies, surface proteins and vesicle traffic are essential components of polarity and probably stabilize the activity of lymphocytes that must negotiate their 'noisy' environment. An additional component of polarity is a family of polarity proteins in T cells that includes Dlg, Scrib and Lgl, as well as a complex of partitioning-defective proteins. Ultimately, the strength of a T cell response may rely on correct T cell polarization. Therefore, loss of polarity regulators or guidance cues may interfere with T cell activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Five polarity systems in motile T lymphocytes.
Figure 2: Distinct zones in motile lymphocytes.
Figure 3: Early events in polarity modulation.
Figure 4: Five polarity systems in established T cell couples.

Similar content being viewed by others

References

  1. Gupton, S.L. et al. Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin. J. Cell Biol. 168, 619–631 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jacobelli, J., Chmura, S.A., Buxton, D.B., Davis, M.M. & Krummel, M.F. A single class II myosin modulates T cell motility and stopping but not synapse assembly. Nat. Immunol. 5, 531–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Wülfing, C. & Davis, M.M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).

    Article  PubMed  Google Scholar 

  4. Smith, A. et al. A talin-dependent LFA-1 focal zone is formed by rapidly migrating T lymphocytes. J. Cell Biol. 170, 141–151 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Serrador, J.M. et al. CD43 interacts with moesin and ezrin and regulates its redistribution to the uropods of T lymphocytes at the cell-cell contacts. Blood 91, 4632–4644 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. del Pozo, M.A. et al. ICAMs redistributed by chemokines to cellular uropods as a mechanism for recruitment of T lymphocytes. J. Cell Biol. 137, 493–508 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krummel, M.F., Sjaastad, M.D., Wülfing, C. & Davis, M.M. Differential assembly of CD3ζ and CD4 during T cell activation. Science 289, 1349–1352 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Tibaldi, E.V., Salgia, R. & Reinherz, E.L. CD2 molecules redistribute to the uropod during T cell scanning: implications for cellular activation and immune surveillance. Proc. Natl. Acad. Sci. USA 99, 7582–7587 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Russell, S. & Oliaro, J. Compartmentalization in T-cell signalling: membrane microdomains and polarity orchestrate signalling and morphology. Immunol. Cell Biol. 84, 107–113 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Das, V. et al. Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes. Immunity 20, 577–588 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Huse, M., Lillemeier, B.F., Kuhns, M.S., Chen, D.S. & Davis, M.M. T cells use two directionally distinct pathways for cytokine secretion. Nat. Immunol. 7, 247–255 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Roche, J.P., Packard, M.C., Moeckel-Cole, S. & Budnik, V. Regulation of synaptic plasticity and synaptic vesicle dynamics by the PDZ protein Scribble. J. Neurosci. 22, 6471–6479 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Montcouquiol, M. et al. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423, 173–177 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Qin, Y., Capaldo, C., Gumbiner, B.M. & Macara, I.G. The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J. Cell Biol. 171, 1061–1071 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lahuna, O. et al. Thyrotropin receptor trafficking relies on the hScrib-betaPIX-GIT1–ARF6 pathway. EMBO J. 24, 1364–1374 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ludford-Menting, M.J. et al. A network of PDZ-containing proteins regulates T cell polarity and morphology during migration and immunological synapse formation. Immunity 22, 737–748 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Yamanaka, T. et al. Mammalian Lgl forms a protein complex with PAR-6 and aPKC independently of PAR-3 to regulate epithelial cell polarity. Curr. Biol. 13, 734–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Plant, P.J. et al. A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nat. Cell Biol. 5, 301–308 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Betschinger, J., Mechtler, K. & Knoblich, J.A. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422, 326–330 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. del Pozo, M.A., Vicente-Manzanares, M., Tejedor, R., Serrador, J.M. & Sanchez-Madrid, F. Rho GTPases control migration and polarization of adhesion molecules and cytoskeletal ERM components in T lymphocytes. Eur. J. Immunol. 29, 3609–3620 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. D'Souza-Schorey, C., Boettner, B. & Van Aelst, L. Rac regulates integrin-mediated spreading and increased adhesion of T lymphocytes. Mol. Cell. Biol. 18, 3936–3946 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haddad, E. et al. The interaction between Cdc42 and WASP is required for SDF-1-induced T-lymphocyte chemotaxis. Blood 97, 33–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Snapper, S.B. et al. WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J. Leukoc. Biol. 77, 993–998 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Weiner, O.D. et al. Hem-1 complexes are essential for Rac activation, actin polymerization, and myosin regulation during neutrophil chemotaxis. PLoS Biol. 4, e38 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Nolz, J.C. et al. The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Curr. Biol. 16, 24–34 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yan, C. et al. WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility. EMBO J. 22, 3602–3612 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Laudanna, C., Campbell, J.J. & Butcher, E.C. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science 271, 981–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Constantin, G. et al. Chemokines trigger immediate β2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 13, 759–769 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Volinsky, N., Gantman, A. & Yablonski, D.A. Pak- and Pix-dependent branch of the SDF-1α signalling pathway mediates T cell chemotaxis across restrictive barriers. Biochem. J. 397, 213–222 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weiss-Haljiti, C. et al. Involvement of phosphoinositide 3-kinase γ, Rac, and PAK signaling in chemokine-induced macrophage migration. J. Biol. Chem. 279, 43273–43284 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Leeuwen, F.N. et al. The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho. J. Cell Biol. 139, 797–807 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, J.H. et al. Roles of p-ERM and Rho-ROCK signaling in lymphocyte polarity and uropod formation. J. Cell Biol. 167, 327–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Palacios, F., Price, L., Schweitzer, J., Collard, J.G. & D'Souza-Schorey, C. An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J. 20, 4973–4986 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Audebert, S. et al. Mammalian Scribble forms a tight complex with the betaPIX exchange factor. Curr. Biol. 14, 987–995 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Mathew, D. et al. Recruitment of scribble to the synaptic scaffolding complex requires GUK-holder, a novel DLG binding protein. Curr. Biol. 12, 531–539 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lue, R.A., Brandin, E., Chan, E.P. & Branton, D. Two independent domains of hDlg are sufficient for subcellular targeting: the PDZ1–2 conformational unit and an alternatively spliced domain. J. Cell Biol. 135, 1125–1137 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, H.R. et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302, 1775–1779 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Joberty, G., Petersen, C., Gao, L. & Macara, I.G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat. Cell Biol. 2, 531–539 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Johansson, A., Driessens, M. & Aspenstrom, P. The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases Cdc42 and Rac1. J. Cell Sci. 113, 3267–3275 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Lin, D. et al. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat. Cell Biol. 2, 540–547 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, H. & Macara, I.G. The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis. Nat. Cell Biol. 8, 227–237 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, X. & Macara, I.G. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat. Cell Biol. 7, 262–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Habets, G.G. et al. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 77, 537–549 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Dustin, M.L., Bromley, S.K., Kan, Z., Peterson, D.A. & Unanue, E.R. Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc. Natl. Acad. Sci. USA 94, 3909–3913 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Negulescu, P.A., Krasieva, T.B., Khan, A., Kerschbaum, H.H. & Cahalan, M.D. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 4, 421–430 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Xavier, R. et al. Discs large (Dlg1) complexes in lymphocyte activation. J. Cell Biol. 166, 173–178 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Round, J.L. et al. Dlgh1 coordinates actin polymerization, synaptic T cell receptor and lipid raft aggregation, and effector function in T cells. J. Exp. Med. 201, 419–430 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Faure, S. et al. ERM proteins regulate cytoskeleton relaxation promoting T cell-APC conjugation. Nat. Immunol. 5, 272–279 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Dulyaninova, N.G., Malashkevich, V.N., Almo, S.C. & Bresnick, A.R. Regulation of myosin-IIA assembly and Mts1 binding by heavy chain phosphorylation. Biochemistry 44, 6867–6876 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Campi, G., Varma, R. & Dustin, M.L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 202, 1031–1036 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barda-Saad, M. et al. Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton. Nat. Immunol. 6, 80–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Bunnell, S.C., Kapoor, V., Trible, R.P., Zhang, W. & Samelson, L.E. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity 14, 315–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Bubeck Wardenburg, J. et al. Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity 9, 607–616 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Hanada, T., Lin, L., Chandy, K.G., Oh, S.S. & Chishti, A.H. Human homologue of the Drosophila discs large tumor suppressor binds to p56lck tyrosine kinase and Shaker type Kv1.3 potassium channel in T lymphocytes. J. Biol. Chem. 272, 26899–26904 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Hanada, T., Lin, L., Tibaldi, E.V., Reinherz, E.L. & Chishti, A.H. GAKIN, a novel kinesin-like protein associates with the human homologue of the Drosophila discs large tumor suppressor in T lymphocytes. J. Biol. Chem. 275, 28774–28784 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, K.H. et al. T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Phee, H., Abraham, R.T. & Weiss, A. Dynamic recruitment of PAK1 to the immunological synapse is mediated by PIX independently of SLP-76 and Vav1. Nat. Immunol. 6, 608–617 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Yablonski, D., Kane, L.P., Qian, D. & Weiss, A.A. Nck-Pak1 signaling module is required for T-cell receptor-mediated activation of NFAT, but not of JNK. EMBO J. 17, 5647–5657 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Macara, I.G. Parsing the polarity code. Nat. Rev. Mol. Cell Biol. 5, 220–231 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Moss, W.C., Irvine, D.J., Davis, M.M. & Krummel, M.F. Quantifying signaling-induced reorientation of TCRs during immunological synapse formation. Proc. Natl. Acad. Sci. USA 99, 15024–15029 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bunnell, S.C. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol. 158, 1263–1275 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wülfing, C., Sjaastad, M.D. & Davis, M.M. Visualizing the dynamics of T cell activation: Intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc. Natl. Acad. Sci. USA 95, 6302–6307 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Batista, A., Millan, J., Mittelbrunn, M., Sanchez-Madrid, F. & Alonso, M.A. Recruitment of transferrin receptor to immunological synapse in response to TCR engagement. J. Immunol. 172, 6709–6714 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Cullinan, P., Sperling, A.I. & Burkhardt, J.K. The distal pole complex: a novel membrane domain distal to the immunological synapse. Immunol. Rev. 189, 111–122 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 6, 117–127 (2005).

    Article  CAS  Google Scholar 

  67. Cannon, J.L. et al. Wasp recruitment to the T cell:APC contact site occurs independently of cdc42 activation. Immunity 15, 249–259 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ. Cell 106, 489–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Lee, K.H. et al. The immunological synapse balances T cell receptor signaling and degradation. Science 302, 1218–1222 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Gomes, E.R., Jani, S. & Gundersen, G.G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating Cells. Cell 121, 451–463 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Etienne-Manneville, S. & Hall, A. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421, 753–756 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Etienne-Manneville, S., Manneville, J.B., Nicholls, S., Ferenczi, M.A. & Hall, A. Cdc42 and Par6-PKCζ regulate the spatially localized association of Dlg1 and APC to control cell polarization. J. Cell Biol. 170, 895–901 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stinchcombe, J.C., Bossi, G., Booth, S. & Griffiths, G.M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Ehrlich, L.I., Ebert, P.J., Krummel, M.F., Weiss, A. & Davis, M.M. Dynamics of p56lck translocation to the T cell immunological synapse following agonist and antagonist stimulation. Immunity 17, 809–822 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Bonello, G. et al. Dynamic recruitment of the adaptor protein LAT: LAT exists in two distinct intracellular pools and controls its own recruitment. J. Cell Sci. 117, 1009–1016 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Egen, J.G. & Allison, J.P. Cytotoxic T lymphocyte associated antigen (CTLA-4) accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 16, 23–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Maldonado, R.A., Irvine, D.J., Schreiber, R. & Glimcher, L.H. A role for the immunological synapse in lineage commitment of CD4 lymphocytes. Nature 431, 527–532 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M.L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kirsch, K.H. et al. The adapter type protein CMS/CD2AP binds to the proto-oncogenic protein c-Cbl through a tyrosine phosphorylation-regulated Src homology 3 domain interaction. J. Biol. Chem. 276, 4957–4963 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Musch, A. et al. Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin-Darby canine kidney cells. Mol. Biol. Cell 13, 158–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Zacchi, P. et al. Rab17 regulates membrane trafficking through apical recycling endosomes in polarized epithelial cells. J. Cell Biol. 140, 1039–1053 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Terai, T., Nishimura, N., Kanda, I., Yasui, N. & Sasaki, T. JRAB/MICAL-L2 is a junctional Rab13-binding protein mediating the endocytic recycling of occludin. Mol. Biol. Cell 17, 2465–2475 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shamri, R. et al. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat. Immunol. 6, 497–506 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Friedman, R.S., Jacobelli, J. & Krummel, M.F. Surface-bound chemokines capture and prime T cells for synapse formation. Nat. Immunol. 7, 1101–1108 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Mempel, T.R., Henrickson, S.E. & von Andrian, U.H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Gilden for critical reading of the manuscript, and C. Lin for assistance with graphics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew F Krummel or Ian Macara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krummel, M., Macara, I. Maintenance and modulation of T cell polarity. Nat Immunol 7, 1143–1149 (2006). https://doi.org/10.1038/ni1404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1404

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing