Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interleukin 18–independent engagement of interleukin 18 receptor-α is required for autoimmune inflammation

Abstract

T helper type 1 (TH1) lymphocytes are considered to be the main pathogenic cell type responsible for organ-specific autoimmune inflammation. As interleukin 18 (IL-18) is a cofactor with IL-12 in promoting TH1 cell development, we examined the function of IL-18 and its receptor, IL-18R, in autoimmune central nervous system inflammation. Similar to IL-12-deficient mice, IL-18-deficient mice were susceptible to experimental autoimmune encephalomyelitis. In contrast, IL-18Rα-deficient mice were resistant to experimental autoimmune encephalomyelitis, indicating involvement of an IL-18Rα ligand other than IL-18 with encephalitogenic properties. Moreover, engagement of IL-18Rα on antigen-presenting cells was required for the generation of pathogenic IL-17-producing T helper cells. Thus, IL-18 and TH1 cells are dispensable, whereas IL-18Rα and IL-17-producing T helper cells are required, for autoimmune central nervous system inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-18 is not required for EAE induction.
Figure 2: IL-18 is required for mitogen- but not antigen-driven TH1 development.
Figure 3: Discordant EAE progression in Il18−/− and Il18r1−/− mice.
Figure 4: Histopathology of Il18−/− and Il18r1−/− mice.
Figure 5: Tissue invasion at preclinical stages is not affected by IL-18Rα.
Figure 6: TH-17 cell induction depends on IL-18Rα but not IL-18.
Figure 7: IL-18Rα deficiency specifically affects nonlymphocytic leukocytes.
Figure 8: IL-18Rα engagement promotes the production of IL-23p40.

Similar content being viewed by others

References

  1. O'Garra, A., Steinman, L. & Gijbels, K. CD4+ T-cell subsets in autoimmunity. Curr. Opin. Immunol. 9, 872–883 (1997).

    Article  CAS  Google Scholar 

  2. Brand, D.D., Kang, A.H. & Rosloniec, E.F. Immunopathogenesis of collagen arthritis. Springer Semin. Immunopathol. 25, 3–18 (2003).

    Article  Google Scholar 

  3. Renno, T., Krakowski, M., Piccirillo, C., Lin, J.Y. & Owens, T. TNF-α expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J. Immunol. 154, 944–953 (1995).

    CAS  PubMed  Google Scholar 

  4. Merrill, J.E. et al. Inflammatory leukocytes and cytokines in the peptide-induced disease of experimental allergic encephalomyelitis in SJL and B10.PL mice. Proc. Natl. Acad. Sci. USA 89, 574–578 (1992).

    Article  CAS  Google Scholar 

  5. Racke, M.K. et al. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J. Exp. Med. 180, 1961–1966 (1994).

    Article  CAS  Google Scholar 

  6. van der Veen, R.C. & Stohlman, S.A. Encephalitogenic Th1 cells are inhibited by Th2 cells with related peptide specificity: relative roles of interleukin (IL)-4 and IL-10. J. Neuroimmunol. 48, 213–220 (1993).

    Article  CAS  Google Scholar 

  7. Chen, Y., Kuchroo, V.K., Inobe, J., Hafler, D.A. & Weiner, H.L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    Article  CAS  Google Scholar 

  8. Frei, K. et al. Tumor necrosis factor α and lymphotoxin α are not required for induction of acute experimental autoimmune encephalomyelitis. J. Exp. Med. 185, 2177–2182 (1997).

    Article  CAS  Google Scholar 

  9. Willenborg, D.O., Fordham, S., Bernard, C.C., Cowden, W.B. & Ramshaw, I.A. IFN-γ plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol. 157, 3223–3227 (1996).

    CAS  PubMed  Google Scholar 

  10. Chu, C.Q., Wittmer, S. & Dalton, D.K. Failure to suppress the expansion of the activated CD4 T cell population in interferon γ-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J. Exp. Med. 192, 123–128 (2000).

    Article  CAS  Google Scholar 

  11. Ferber, I.A. et al. Mice with a disrupted IFN-γ gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol. 156, 5–7 (1996).

    CAS  Google Scholar 

  12. Becher, B., Durell, B.G. & Noelle, R.J. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J. Clin. Invest. 110, 493–497 (2002).

    Article  CAS  Google Scholar 

  13. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  Google Scholar 

  14. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  15. Okamura, H. et al. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 378, 88–91 (1995).

    Article  CAS  Google Scholar 

  16. Dinarello, C.A. IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J. Allergy Clin. Immunol. 103, 11–24 (1999).

    Article  CAS  Google Scholar 

  17. Dinarello, C.A. Interleukin-18. Methods 19, 121–132 (1999).

    Article  CAS  Google Scholar 

  18. Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143–150 (1998).

    Article  CAS  Google Scholar 

  19. Suzuki, N. et al. IL-1 receptor-associated kinase 4 is essential for IL-18-mediated NK and Th1 cell responses. J. Immunol. 170, 4031–4035 (2003).

    Article  CAS  Google Scholar 

  20. O'Neill, L.A. & Dinarello, C.A. The IL-1 receptor/toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunol. Today 21, 206–209 (2000).

    Article  CAS  Google Scholar 

  21. Kaser, A. et al. Interleukin-18 attracts plasmacytoid dendritic cells (DC2s) and promotes Th1 induction by DC2s through IL-18 receptor expression. Blood 103, 648–655 (2004).

    Article  CAS  Google Scholar 

  22. Tomura, M. et al. Differential capacities of CD4+, CD8+, and CD4CD8 T cell subsets to express IL-18 receptor and produce IFN-γ in response to IL-18. J. Immunol. 160, 3759–3765 (1998).

    CAS  PubMed  Google Scholar 

  23. Xu, D. et al. Selective expression and functions of interleukin 18 receptor on T helper (Th) type 1 but not Th2 cells. J. Exp. Med. 188, 1485–1492 (1998).

    Article  CAS  Google Scholar 

  24. Yoshimoto, T. et al. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-γ production. J. Immunol. 161, 3400–3407 (1998).

    CAS  PubMed  Google Scholar 

  25. Boraschi, D. et al. Cytokines in inflammation. Joint Workshop of the Deutsche Gesellschaft fur Immunologie (DGfI) and the Gruppo di Cooperazione in Immunologia (GCI) Assergi (L'Aquila, Italy), February 8–11, 1998. Eur. Cytokine Netw. 9, 205–212 (1998).

    CAS  PubMed  Google Scholar 

  26. Torigoe, K. et al. Purification and characterization of the human interleukin-18 receptor. J. Biol. Chem. 272, 25737–25742 (1997).

    Article  CAS  Google Scholar 

  27. Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  Google Scholar 

  28. Gran, B. et al. IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J. Immunol. 169, 7104–7110 (2002).

    Article  CAS  Google Scholar 

  29. Gran, B. et al. Early administration of IL-12 suppresses EAE through induction of interferon-γ. J. Neuroimmunol. 156, 123–131 (2004).

    Article  CAS  Google Scholar 

  30. Wei, X.Q. et al. Altered immune responses and susceptibility to Leishmania major and Staphylococcus aureus infection in IL-18-deficient mice. J. Immunol. 163, 2821–2828 (1999).

    CAS  PubMed  Google Scholar 

  31. Kinjo, Y. et al. Contribution of IL-18 to Th1 response and host defense against infection by Mycobacterium tuberculosis: a comparative study with IL-12p40. J. Immunol. 169, 323–329 (2002).

    Article  CAS  Google Scholar 

  32. Santos, L.L. et al. IL-18 is redundant in T-cell responses and in joint inflammation in antigen-induced arthritis. Immunol. Cell Biol. 84, 166–173 (2006).

    Article  CAS  Google Scholar 

  33. Hoshino, K. et al. Cutting edge: generation of IL-18 receptor-deficient mice: evidence for IL-1 receptor-related protein as an essential IL-18 binding receptor. J. Immunol. 162, 5041–5044 (1999).

    CAS  PubMed  Google Scholar 

  34. Hickey, W.F. Migration of hematogenous cells through the blood-brain barrier and the initiation of CNS inflammation. Brain Pathol. 1, 97–105 (1991).

    Article  CAS  Google Scholar 

  35. Wekerle, H., Sun, D., Oropeza-Wekerle, R.L. & Meyermann, R. Immune reactivity in the nervous system: modulation of T-lymphocyte activation by glial cells. J. Exp. Biol. 132, 43–57 (1987).

    CAS  PubMed  Google Scholar 

  36. McColl, S.R. et al. Treatment with anti-granulocyte antibodies inhibits the effector phase of experimental autoimmune encephalomyelitis. J. Immunol. 161, 6421–6426 (1998).

    CAS  PubMed  Google Scholar 

  37. Becher, B., Durell, B.G. & Noelle, R.J. IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J. Clin. Invest. 112, 1186–1191 (2003).

    Article  CAS  Google Scholar 

  38. Shi, F.D., Takeda, K., Akira, S., Sarvetnick, N. & Ljunggren, H.G. IL-18 directs autoreactive T cells and promotes autodestruction in the central nervous system via induction of IFN-γ by NK cells. J. Immunol. 165, 3099–3104 (2000).

    Article  CAS  Google Scholar 

  39. Leung, B.P. et al. A role for IL-18 in neutrophil activation. J. Immunol. 167, 2879–2886 (2001).

    Article  CAS  Google Scholar 

  40. Becher, B., Durell, B.G., Miga, A.V., Hickey, W.F. & Noelle, R.J. The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J. Exp. Med. 193, 967–974 (2001).

    Article  CAS  Google Scholar 

  41. Greter, M. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 11, 328–334 (2005).

    Article  CAS  Google Scholar 

  42. Vermot-Desroches, C. et al. Monoclonal antibodies specific for the IL-18 receptor. Cell. Immunol. 236, 101–104 (2005).

    Article  CAS  Google Scholar 

  43. Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000).

    Article  CAS  Google Scholar 

  44. Aggarwal, S., Ghilardi, N., Xie, M.H., de Sauvage, F.J. & Gurney, A.L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    Article  CAS  Google Scholar 

  45. Harrington, L.E. et al. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  46. Su, S.B. et al. Essential role of the MyD88 pathway, but nonessential roles of TLRs 2, 4, and 9, in the adjuvant effect promoting Th1-mediated autoimmunity. J. Immunol. 175, 6303–6310 (2005).

    Article  CAS  Google Scholar 

  47. Jiang, H.R. et al. IL-18 not required for IRBP peptide-induced EAU: studies in gene-deficient mice. Invest. Ophthalmol. Vis. Sci. 42, 177–182 (2001).

    CAS  PubMed  Google Scholar 

  48. Sims, J.E. IL-1 and IL-18 receptors, and their extended family. Curr. Opin. Immunol. 14, 117–122 (2002).

    Article  CAS  Google Scholar 

  49. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  Google Scholar 

  50. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  Google Scholar 

  51. Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  Google Scholar 

  52. Stockinger, B. & Hausmann, B. Functional recognition of in vivo processed self antigen. Int. Immunol. 6, 247–254 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Hofstetter (University of Wurzburg, Wurzburg, Germany) and V. Woertmann (University of Zurich, Zurich, Switzerland) for technical assistance; and E. Saller and T. Buch (University of Zurich, Zurich, Switzerland) for critical review of this manuscript. Supported by the Swiss National Science Foundation (B.B.), the National Center for Competence in Research (B.B.), the Swiss Multiple Sclerosis Society (B.B.), the Hertie Foundation (B.B. & M.P.), Serono Pharmaceuticals Geneva (B.B.), the Center for Neuroscience Research in Zurich (I.G.), Roche Research Foundation (EU) and the National Multiple Sclerosis Society (Harry Weaver Neuroscience scholar; B.B.).

Author information

Authors and Affiliations

Authors

Contributions

I.G. did all the experiments unless stated otherwise; E.U. helped with the generation of experimentation and analysis of bone marrow–chimeric mice; K.W. and M.P. analyzed the histopathological data; and B.B. and I.G. designed all the experiments and prepared the manuscript.

Corresponding author

Correspondence to Burkhard Becher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Il18−/− LN cells do not produce IL-18. (PDF 350 kb)

Supplementary Fig. 2

CD4+ T cells from Il18−/− and Il18r1−/− mice are capable of IFN-γ production. (PDF 340 kb)

Supplementary Fig. 3

Analysis of inflammatory infiltrates, cytokines and chemokines in MOG(35-55)-immunized mice. (PDF 1188 kb)

Supplementary Fig. 4

Intracellular staining for IL-17 and IFN-γ. (PDF 347 kb)

Supplementary Table 1

IL-18Rα Ab does not affect the cell composition of the peripheral immune compartment. (PDF 345 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutcher, I., Urich, E., Wolter, K. et al. Interleukin 18–independent engagement of interleukin 18 receptor-α is required for autoimmune inflammation. Nat Immunol 7, 946–953 (2006). https://doi.org/10.1038/ni1377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1377

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing