Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Remodeling of the lectin–EGF-like domain interface in P- and L-selectin increases adhesiveness and shear resistance under hydrodynamic force

Abstract

Crystal structures of the lectin and epidermal growth factor (EGF)–like domains of P-selectin show 'bent' and 'extended' conformations. An extended conformation would be 'favored' by forces exerted on a selectin bound at one end to a ligand and at the other end to a cell experiencing hydrodynamic drag forces. To determine whether the extended conformation has higher affinity for ligand, we introduced an N-glycosylation site to 'wedge open' the interface between the lectin and EGF-like domains of P-selectin. This alteration increased the affinity of P-selectin for its ligand P-selectin glycoprotein 1 (PSGL-1) and thereby the strength of P-selectin-mediated rolling adhesion. Similarly, an asparagine-to-glycine substitution in the lectin-EGF-like domain interface of L-selectin enhanced rolling adhesion under shear flow. Our results demonstrate that force, by 'favoring' an extended selectin conformation, can strengthen selectin-ligand bonds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selectin variants.
Figure 2: Wedge mutant P-selectin has increased adhesiveness to HL-60 cells.
Figure 3: Rolling and transient tethering of wedge mutant P-selectin.
Figure 4: Increased affinity of wedge mutant P-selectin.
Figure 5: Increased binding of wedge mutant soluble P-selectin to PSGL-1 transfectants.
Figure 6: Enhancement of rolling adhesiveness by the N138G substitution in L-selectin.
Figure 7: The N138G substitution in L-selectin increases accumulation in shear flow and decreases transient tether koff.

Similar content being viewed by others

References

  1. Rosen, S.D. & Bertozzi, C.R. The selectins and their ligands. Curr. Opin. Cell Biol. 6, 663–673 (1994).

    Article  CAS  Google Scholar 

  2. Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multi-step paradigm. Cell 76, 301–314 (1994).

    Article  CAS  Google Scholar 

  3. Kansas, G.S. Selectins and their ligands: Current concepts and controversies. Blood 88, 3259–3287 (1996).

    CAS  PubMed  Google Scholar 

  4. Vestweber, D. & Blanks, J.E. Mechanisms that regulate the function of the selectins and their ligands. Physiol. Rev. 79, 181–213 (1999).

    Article  CAS  Google Scholar 

  5. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  Google Scholar 

  6. McEver, R.P. Selectins: lectins that initiate cell adhesion under flow. Curr. Opin. Cell Biol. 14, 581–586 (2002).

    Article  CAS  Google Scholar 

  7. Lawrence, M.B. & Springer, T.A. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65, 859–873 (1991).

    Article  CAS  Google Scholar 

  8. Alon, R., Hammer, D.A. & Springer, T.A. Lifetime of the P-selectin: carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374, 539–542 (1995).

    Article  CAS  Google Scholar 

  9. McEver, R.P. Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb. Haemost. 86, 746–756 (2001).

    Article  CAS  Google Scholar 

  10. Chen, S., Alon, R., Fuhlbrigge, R.C. & Springer, T.A. Rolling and transient tethering of leukocytes on antibodies reveal specializations of selectins. Proc. Natl. Acad. Sci. USA 94, 3172–3177 (1997).

    Article  CAS  Google Scholar 

  11. Chen, S. & Springer, T.A. An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. J. Cell Biol. 144, 185–200 (1999).

    Article  CAS  Google Scholar 

  12. Ramachandran, V., Williams, M., Yago, T., Schmidtke, D.W. & McEver, R.P. Dynamic alterations of membrane tethers stabilize leukocyte rolling on P-selectin. Proc. Natl. Acad. Sci. USA 101, 13519–13524 (2004).

    Article  CAS  Google Scholar 

  13. Yago, T. et al. Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow. J. Cell Biol. 158, 787–799 (2002).

    Article  CAS  Google Scholar 

  14. de Chateau, M., Chen, S., Salas, A. & Springer, T.A. Kinetic and mechanical basis of rolling through an integrin and novel Ca2+-dependent rolling and Mg2+-dependent firm adhesion modalities for the α4β7-MAdCAM-1 interaction. Biochemistry 40, 13972–13979 (2001).

    Article  CAS  Google Scholar 

  15. Marshall, B.T. et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003).

    Article  CAS  Google Scholar 

  16. Sarangapani, K.K. et al. Low force decelerates L-selectin dissociationfrom P-selectin glycoprotein ligand-1 and endoglycan. J. Biol. Chem. 279, 2291–2298 (2003).

    Article  Google Scholar 

  17. Yago, T. et al. Catch bonds govern adhesion through L-selectin at threshold shear. J. Cell Biol. 166, 913–923 (2004).

    Article  CAS  Google Scholar 

  18. Springer, T.A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57, 827–872 (1995).

    Article  CAS  Google Scholar 

  19. Ley, K. & Kansas, G.S. Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nat. Rev. Immunol. 4, 325–336 (2004).

    Article  CAS  Google Scholar 

  20. Rosen, S.D. Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol. 22, 129–156 (2004).

    Article  CAS  Google Scholar 

  21. Foxall, C. et al. The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl LewisX oligosaccharide. J. Cell Biol. 117, 895–902 (1992).

    Article  CAS  Google Scholar 

  22. Sako, D. et al. Expression cloning of a functional glycoprotein ligand for P-selectin. Cell 75, 1179–1186 (1993).

    Article  CAS  Google Scholar 

  23. Somers, W.S., Tang, J., Shaw, G.D. & Camphausen, R.T. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLeX and PSGL-1. Cell 103, 467–479 (2000).

    Article  CAS  Google Scholar 

  24. Konstantopoulos, K., Hanley, W.D. & Wirtz, D. Receptor-ligand binding: 'catch' bonds finally caught. Curr. Biol. 13, R611–R613 (2003).

    Article  CAS  Google Scholar 

  25. Patel, K.D., Nollert, M.U. & McEver, R.P. P-selectin must extend a sufficient length from the plasma membrane to mediate rolling of neutrophils. J. Cell Biol. 131, 1893–1902 (1995).

    Article  CAS  Google Scholar 

  26. Kansas, G.S., Spertini, O., Stoolman, L.M. & Tedder, T.F. Molecular mapping of functional domains of the leukocyte receptor for endothelium, LAM-1. J. Cell Biol. 114, 351–358 (1991).

    Article  CAS  Google Scholar 

  27. Dwir, O., Kansas, G.S. & Alon, R. An activated L-selectin mutant with conserved equilibrium binding properties but enhanced ligand recognition under shear flow. J. Biol. Chem. 275, 18682–18691 (2000).

    Article  CAS  Google Scholar 

  28. Kansas, G.S. et al. A role for the epidermal growth factor-like domain of P-selectin in ligand recognition and cell adhesion. J. Cell Biol. 124, 609–618 (1994).

    Article  CAS  Google Scholar 

  29. Graves, B.J. et al. Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains. Nature 367, 532–538 (1994).

    Article  CAS  Google Scholar 

  30. von Andrian, U.H. et al. Two-step model of leukocyte-endothelial cell interaction in inflammation: Distinct roles for LECAM-1 and the leukocyte β2 integrins in vivo. Proc. Natl. Acad. Sci. USA 88, 7538–7542 (1991).

    Article  CAS  Google Scholar 

  31. Wenzel, K., Hanke, R. & Speer, A. Polymorphism in the human E-selectin gene detected by PCR-SSCP. Hum. Genet. 94, 452–453 (1994).

    Article  CAS  Google Scholar 

  32. Wenzel, K., Ernst, M., Rohde, K., Baumann, G. & Speer, A. DNA polymorphisms in adhesion molecule genes–a new risk factor for early atherosclerosis. Hum. Genet. 97, 15–20 (1996).

    Article  CAS  Google Scholar 

  33. Revelle, B.M., Scott, D. & Beck, P.J. Single amino acid residues in the E- and P-selectin epidermal growth factor domains can determine carbohydrate binding specificity. J. Biol. Chem. 271, 16160–16170 (1996).

    Article  CAS  Google Scholar 

  34. Rao, R.M., Haskard, D.O. & Landis, R.C. Enhanced recruitment of Th2 and CLA-negative lymphocytes by the S128R polymorphism of E-selectin. J. Immunol. 169, 5860–5865 (2002).

    Article  CAS  Google Scholar 

  35. Rao, R.M. et al. The S128R polymorphism of E-selectin mediates neuraminidase-resistant tethering of myeloid cells under shear flow. Eur. J. Immunol. 32, 251–260 (2002).

    Article  CAS  Google Scholar 

  36. Finger, E.B. et al. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature 379, 266–269 (1996).

    Article  CAS  Google Scholar 

  37. Evans, E., Leung, A., Heinrich, V. & Zhu, C. Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond. Proc. Natl. Acad. Sci. USA 101, 11281–11286 (2004).

    Article  CAS  Google Scholar 

  38. Sarangapani, K.K. et al. Low force decelerates L-selectin dissociation from P-selectin glycoprotein ligand-1 and endoglycan. J. Biol. Chem. 279, 2291–2298 (2004).

    Article  CAS  Google Scholar 

  39. Reeves, P.J., Callewaert, N., Contreras, R. & Khorana, H.G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl. Acad. Sci. USA 99, 13419–13424 (2002).

    Article  CAS  Google Scholar 

  40. Mitoma, J. et al. Extended core 1 and core 2 branched O-glycans differentially modulate Sialyl Lewis x-type L-selectin ligand activity. J. Biol. Chem. 278, 9953–9961 (2003).

    Article  CAS  Google Scholar 

  41. Geng, J-G. et al. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature 343, 757–760 (1990).

    Article  CAS  Google Scholar 

  42. Erbe, D.V. et al. P- and E- selectin use common sites for carbohydrate ligand recognition and cell adhesion. J. Cell Biol. 120, 1227–1235 (1993).

    Article  CAS  Google Scholar 

  43. Wu, G., Xi, X., Li, P., Chu, X. & Ruan, C. Preparation of a monoclonal antibody, SZ-51, that recognizes an α-granule membrane protein (GMP-140) on the surface of activated human platelets. Nouv. Rev. Fr. Hematol. 32, 231–235 (1990).

    CAS  PubMed  Google Scholar 

  44. Moore, K.L. et al. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J. Cell Biol. 128, 661–671 (1995).

    Article  CAS  Google Scholar 

  45. Larsen, E. et al. PADGEM protein: A receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 59, 305–312 (1989).

    Article  CAS  Google Scholar 

  46. Setiadi, H., Sedgewick, G., Erlandsen, S.L. & McEver, R.P. Interactions of the cytoplasmic domain of P-selectin with clathrin-coated pits enhance leukocyte adhesion under flow. J. Cell Biol. 142, 859–871 (1998).

    Article  CAS  Google Scholar 

  47. Lu, C. & Springer, T.A. The α subunit cytoplasmic domain regulates the assembly and adhesiveness of integrin lymphocyte function-associated antigen-1 (LFA-1). J. Immunol. 159, 268–278 (1997).

    CAS  PubMed  Google Scholar 

  48. Takagi, J., Erickson, H.P. & Springer, T.A. C-terminal opening mimics “inside-out” activation of integrin α5β1 . Nat. Struct. Biol. 8, 412–416 (2001).

    Article  CAS  Google Scholar 

  49. Keefe, A.D., Wilson, D.S., Seelig, B. & Szostak, J.W. One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr. Purif. 23, 440–446 (2001).

    Article  CAS  Google Scholar 

  50. Chen, S. & Springer, T.A. Selectin receptor-ligand bonds: Formation limited by shear rate and dissociation governed by the Bell model. Proc. Natl. Acad. Sci. USA 98, 950–955 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Camphausen for suggestions and discussion. Supported by Kirschstein National Research Service Award (F32 AI052851 to U.T.P., F32 GM073529 to T.T.W. and HL-48675 to T.A.S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy A Springer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Primers were used in PCR-based mutagenesis to generate the various P-selectin and L-selectin variants. (PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phan, U., Waldron, T. & Springer, T. Remodeling of the lectin–EGF-like domain interface in P- and L-selectin increases adhesiveness and shear resistance under hydrodynamic force. Nat Immunol 7, 883–889 (2006). https://doi.org/10.1038/ni1366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1366

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing