Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination

Abstract

B cells producing high-affinity antibodies are destined to differentiate into memory B cells and plasma cells, but the mechanisms leading to those differentiation pathways are mostly unknown. Here we report that the transcription factor IRF4 is required for the generation of plasma cells. Transgenic mice with conditional deletion of Irf4 in germinal center B cells lacked post–germinal center plasma cells and were unable to differentiate memory B cells into plasma cells. Plasma cell differentiation required IRF4 as well as the transcriptional repressor Blimp-1, which both acted 'upstream' of the transcription factor XBP-1. In addition, IRF4-deficient B cells had impaired expression of activation-induced deaminase and lacked class-switch recombination, suggesting an independent function for IRF4 in this process. These results identify IRF4 as a crucial transcriptional 'switch' in the generation of functionally competent plasma cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional analysis of the conditionally deleted Irf4 allele.
Figure 2: Development of GC B cells in Irf4fl/−Cγ1-Cre mice.
Figure 3: Irf4fl/−Cγ1-Cre mice lack plasma cells.
Figure 4: Response of Irf4−/− B cells to LPS stimulation.
Figure 5: Response of Irf4−/− B cells to stimulation with CD40 plus IL-4.
Figure 6: Generation of antigen-specific memory B cells by Irf4fl/−Cγ1-Cre mice.
Figure 7: Lack of memory–to–plasma cell differentiation in Irf4fl/−Cγ1-Cre mice.

Similar content being viewed by others

References

  1. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  Google Scholar 

  2. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    Article  CAS  Google Scholar 

  3. Ye, B.H. et al. The BCL6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat. Genet. 16, 161–170 (1997).

    Article  CAS  Google Scholar 

  4. Dent, A.L., Shaffer, A.L., Yu, X., Allman, D. & Staudt, L.M. Control of inflammation, cytokine expression, and germinal center formation by BCL6. Science 276, 589–592 (1997).

    Article  CAS  Google Scholar 

  5. Angelin-Duclos, C., Cattoretti, G., Lin, K.I. & Calame, K. Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. J. Immunol. 165, 5462–5471 (2000).

    Article  CAS  Google Scholar 

  6. Falini, B. et al. A monoclonal antibody (MUM1p) detects expression of the MUM1/IRF4 protein in a subset of germinal center B cells, plasma cells, and activated T cells. Blood 95, 2084–2092 (2000).

    CAS  Google Scholar 

  7. Raaphorst, F.M. et al. Cutting edge: polycomb gene expression patterns reflect distinct B cell differentiation stages in human germinal centers. J. Immunol. 164, 1–4 (2000).

    Article  CAS  Google Scholar 

  8. Basso, K. et al. Tracking CD40 signaling during germinal center development. Blood 104, 4088–4096 (2004).

    Article  CAS  Google Scholar 

  9. Fornek, J.L. et al. Critical role for STAT3 in T-dependent terminal differentiation of IgG B cells. Blood 107, 1085–1091 (2006).

    Article  CAS  Google Scholar 

  10. Scheeren, F.A. et al. STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls BCL6 expression. Nat. Immunol. 6, 303–313 (2005).

    Article  CAS  Google Scholar 

  11. Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607–620 (2003).

    Article  CAS  Google Scholar 

  12. Eisenbeis, C.F., Singh, H. & Storb, U. Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dev. 9, 1377–1387 (1995).

    Article  CAS  Google Scholar 

  13. Matsuyama, T. et al. Molecular cloning of LSIRF, a lymphoid-specific member of the interferon regulatory factor family that binds the interferon-stimulated response element (ISRE). Nucleic Acids Res. 23, 2127–2136 (1995).

    Article  CAS  Google Scholar 

  14. Yamagata, T. et al. A novel interferon regulatory factor family transcription factor, ICSAT/Pip/LSIRF, that negatively regulates the activity of interferon-regulated genes. Mol. Cell. Biol. 16, 1283–1294 (1996).

    Article  CAS  Google Scholar 

  15. Iida, S. et al. Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma. Nat. Genet. 17, 226–230 (1997).

    Article  CAS  Google Scholar 

  16. Mamane, Y. et al. Interferon regulatory factors: the next generation. Gene 237, 1–14 (1999).

    Article  CAS  Google Scholar 

  17. Pernis, A.B. The role of IRF4 in B and T cell activation and differentiation. J. Interferon Cytokine Res. 22, 111–120 (2002).

    Article  CAS  Google Scholar 

  18. Marecki, S. & Fenton, M.J. The role of IRF4 in transcriptional regulation. J. Interferon Cytokine Res. 22, 121–133 (2002).

    Article  CAS  Google Scholar 

  19. van der Stoep, N., Quinten, E., Marcondes Rezende, M. & van den Elsen, P.J. E47, IRF4, and PU.1 synergize to induce B-cell-specific activation of the class II transactivator promoter III (CIITA-PIII). Blood 104, 2849–2857 (2004).

    Article  CAS  Google Scholar 

  20. Gupta, S., Jiang, M., Anthony, A. & Pernis, A.B. Lineage-specific modulation of interleukin 4 signaling by interferon regulatory factor 4. J. Exp. Med. 190, 1837–1848 (1999).

    Article  CAS  Google Scholar 

  21. Lu, R., Medina, K.L., Lancki, D.W. & Singh, H. IRF4,8 orchestrate the pre-B-to-B transition in lymphocyte development. Genes Dev. 17, 1703–1708 (2003).

    Article  CAS  Google Scholar 

  22. Mittrücker, H.W. et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275, 540–543 (1997).

    Article  Google Scholar 

  23. Rosenwald, A. et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J. Exp. Med. 198, 851–862 (2003).

    Article  CAS  Google Scholar 

  24. Savage, K.J. et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 102, 3871–3879 (2003).

    Article  CAS  Google Scholar 

  25. Farley, F.W., Soriano, P., Steffen, L.S. & Dymecki, S.M. Widespread recombinase expression using FLPeR (flipper) mice. Genesis 28, 106–110 (2000).

    Article  CAS  Google Scholar 

  26. Casola, S. et al. Tracking germinal center B cells expressing germline immunoglobulin γ1 transcripts by conditional gene targeting. Proc. Natl. Acad. Sci. USA 103, 7396–7401 (2006).

    Article  CAS  Google Scholar 

  27. Kraal, G., Weissman, I.L. & Butcher, E.C. Germinal centre B cells: antigen specificity and changes in heavy chain class expression. Nature 298, 377–379 (1982).

    Article  CAS  Google Scholar 

  28. Ridderstad, A. & Tarlinton, D.M. Kinetics of establishing the memory B cell population as revealed by CD38 expression. J. Immunol. 160, 4688–4695 (1998).

    CAS  PubMed  Google Scholar 

  29. Sanderson, R.D., Lalor, P. & Bernfield, M. B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Regul. 1, 27–35 (1989).

    Article  CAS  Google Scholar 

  30. Blink, E.J. et al. Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. J. Exp. Med. 201, 545–554 (2005).

    Article  CAS  Google Scholar 

  31. Shaffer, A.L. et al. XBP-1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81–93 (2004).

    Article  CAS  Google Scholar 

  32. Reimold, A.M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001).

    Article  CAS  Google Scholar 

  33. Peitz, M., Pfannkuche, K., Rajewsky, K. & Edenhofer, F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc. Natl. Acad. Sci. USA 99, 4489–4494 (2002).

    Article  CAS  Google Scholar 

  34. Layton, J.E., Vitetta, E.S., Uhr, J.W. & Krammer, P.H. Clonal analysis of B cells induced to secrete IgG by T cell-derived lymphokine(s). J. Exp. Med. 160, 1850–1863 (1984).

    Article  CAS  Google Scholar 

  35. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  Google Scholar 

  36. Kinoshita, K., Harigai, M., Fagarasan, S., Muramatsu, M. & Honjo, T. A hallmark of active class switch recombination: transcripts directed by I promoters on looped-out circular DNAs. Proc. Natl. Acad. Sci. USA 98, 12620–12623 (2001).

    Article  CAS  Google Scholar 

  37. Hasbold, J., Corcoran, L.M., Tarlinton, D.M., Tangye, S.G. & Hodgkin, P.D. Evidence from the generation of immunoglobulin G–secreting cells that stochastic mechanisms regulate lymphocyte differentiation. Nat. Immunol. 5, 55–63 (2004).

    Article  CAS  Google Scholar 

  38. Hasbold, J., Lyons, A.B., Kehry, M.R. & Hodgkin, P.D. Cell division number regulates IgG1 and IgE switching of B cells following stimulation by CD40 ligand and IL-4. Eur. J. Immunol. 28, 1040–1051 (1998).

    Article  CAS  Google Scholar 

  39. Randall, T.D. et al. Arrest of B lymphocyte terminal differentiation by CD40 signaling: mechanism for lack of antibody-secreting cells in germinal centers. Immunity 8, 733–742 (1998).

    Article  CAS  Google Scholar 

  40. Knödel, M., Kuss, A.W., Berberich, I. & Schimpl, A. Blimp-1 over-expression abrogates IL-4- and CD40-mediated suppression of terminal B cell differentiation but arrests isotype switching. Eur. J. Immunol. 31, 1972–1980 (2001).

    Article  Google Scholar 

  41. Weiss, U. & Rajewsky, K. The repertoire of somatic antibody mutants accumulating in the memory compartment after primary immunization is restricted through affinity maturation and mirrors that expressed in the secondary response. J. Exp. Med. 172, 1681–1689 (1990).

    Article  CAS  Google Scholar 

  42. McHeyzer-Williams, M.G., McLean, M.J., Lalor, P.A. & Nossal, G.J. Antigen-driven B cell differentiation in vivo. J. Exp. Med. 178, 295–307 (1993).

    Article  CAS  Google Scholar 

  43. Smith, K.G., Light, A., Nossal, G.J. & Tarlinton, D.M. The extent of affinity maturation differs between the memory and antibody-forming cell compartments in the primary immune response. EMBO J. 16, 2996–3006 (1997).

    Article  CAS  Google Scholar 

  44. Klein, U. et al. Transcriptional analysis of the B cell germinal center reaction. Proc. Natl. Acad. Sci. USA 100, 2639–2644 (2003).

    Article  CAS  Google Scholar 

  45. Lohoff, M. et al. Enhanced TCR-induced apoptosis in interferon regulatory factor 4-deficient CD4+ Th cells. J. Exp. Med. 200, 247–253 (2004).

    Article  CAS  Google Scholar 

  46. Kallies, A. et al. Plasma cell ontogeny defined by quantitative changes in Blimp-1 expression. J. Exp. Med. 200, 967–977 (2004).

    Article  CAS  Google Scholar 

  47. Sciammas, R. & Davis, M.M. Modular nature of Blimp-1 in the regulation of gene expression during B cell maturation. J. Immunol. 172, 5427–5440 (2004).

    Article  CAS  Google Scholar 

  48. Gonda, H. et al. The balance between Pax5 and Id2 activities is the key to AID gene expression. J. Exp. Med. 198, 1427–1437 (2003).

    Article  CAS  Google Scholar 

  49. Cattoretti, G. et al. Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells. Blood 107, 3967–3975 (2006).

    Article  CAS  Google Scholar 

  50. Lee, C.H. et al. Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein. J. Exp. Med. 203, 63–72 (2006).

    Article  CAS  Google Scholar 

  51. Cattoretti, G. et al. PRDM1/Blimp-1 is expressed in human B-lymphocytes committed to the plasma cell lineage. J. Pathol. 206, 76–86 (2005).

    Article  CAS  Google Scholar 

  52. Klein, U., Esposito, G., Baudat, F., Keeney, S. & Jasin, M. Mice deficient for the type II topoisomerase-like DNA transesterase Spo11 show normal immunoglobulin somatic hypermutation and class switching. Eur. J. Immunol. 32, 316–321 (2002).

    Article  CAS  Google Scholar 

  53. Faili, A. et al. AID-dependent somatic hypermutation occurs as a DNA single-strand event in the BL2 cell line. Nat. Immunol. 3, 815–821 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Smith and M. Benito for help with the immunohistochemistry; M. Deren for genotyping; J. Gao for help with ELISA; K. Gordon and S. Stefanova for cell sorting; V. Miljkovic for sequencing; M. Alizhamov for pEasyFlox; D. Tarlinton (Walter Eliza Hall Institute, Parkville, Australia) for advice on the detection of NP-binding B cells; and L. Pasqualucci, M. Saito and A. Pernis for discussions. Supported by the National Institutes of Health (CA92625 and CA098285 to K.R. and CA92625 and CA37295 to R.D.-F.) and the Human Frontiers Science Program (U.K.).

Author information

Authors and Affiliations

Authors

Contributions

U.K. designed research, did experiments, analyzed data and wrote the manuscript; R.D.-F. designed research and wrote the manuscript; S.C. and K.R. contributed the Cγ1-Cre mouse, which was critical for this analysis, and designed research; G.C. did the immunostaining experiments and analyzed data; Q.S. did the embryonic stem cell injection and ELISA; M.L. did the VH sequencing analysis; T.M. maintained and genotyped the mouse cohort; and T.L. was involved in construction of the transgenic Irf4 mouse and provided materials.

Note: Supplementary information is available on the Nature Immunology website.

Corresponding author

Correspondence to Riccardo Dalla-Favera.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Generation and functional analysis of the conditional Irf4 allele (PDF 109 kb)

Supplementary Fig. 2

Functionality of the conditional Irf4 allele in vivo. (PDF 280 kb)

Supplementary Fig. 3

Absence of plasma cells in Irf4f1/−Cγ1-Cre mice. (PDF 51 kb)

Supplementary Fig. 4

Production of IgG1+ cells in B cell cultures from Irf4fl/−Cγ1-Cre mice stimulated with CD40 plus IL-4 and CSFE analysis of CD40 plus IL-4-stimulated Irf4−/− cells. (PDF 159 kb)

Supplementary Fig. 5

IgG1+eGFP+ B cells in Irf4fl/−Cγ1-Cre mice display a phenotype typical of memory B cells. (PDF 72 kb)

Supplementary Fig. 6

Lack of memory to plasma cell differentiation in Irf4fl/−Cγ1-Cre mice. (PDF 99 kb)

Supplementary Table 1

Sequence analysis of γ1 (membrane-form) transcripts amplified splenic and PB B cells of Irf4fl/−, Irf4fl/+ and Irf4+/− mice at day 14 after NP-KLH immunization. (PDF 23 kb)

Supplementary Table 2

Sequence analysis of γ1 transcripts amplified from B cell purified from Irf4fl/−Cγ1-Cre and Irf4fl/+Cγ1-Cre mice at day 14 after NP-KLH immunization. (PDF 25 kb)

Supplementary Table 3

Sequence analysis of γ1 transcripts amplified from purified PB B cells of Irf4fl/−Cγ1-Cre and Irf4fl/+Cγ1-Cre mice at day 42 after NP-KLH immunization. (PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, U., Casola, S., Cattoretti, G. et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol 7, 773–782 (2006). https://doi.org/10.1038/ni1357

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1357

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing