Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A unique function for cyclin D3 in early B cell development

Abstract

During hematopoiesis, stem cell proliferation is dependent on expression of the D-type cyclins. However, little is known about how each cyclin D contributes to the development of specific hematopoietic lineages. Here, analysis of Ccnd1−/−, Ccnd2−/−, Ccnd3−/− and Ccnd2−/−Ccnd3−/− mice showed that cyclin D3 was uniquely required for the development of pre–B cells. Transcription of Ccnd3 was dependent on expression of the common γ-chain. In contrast, expression of the pre–B cell receptor and activation of 'downstream' signaling pathways prevented proteasome-mediated degradation of cyclin D3. Cyclin D3 has a key function in B cell development by integrating cytokine and pre–B cell receptor–dependent signals to expand the pool of pre–B cells that have successfully rearranged immunoglobulin heavy chain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cyclin D3 but not cyclin D2 is induced during the transition from pro–B cell to large pre–B cell.
Figure 2: B cell development is impaired in the bone marrow of Ccnd3−/− but not Ccnd2−/− mice.
Figure 3: The developmental defect in Ccnd3−/− B cell progenitors is cell autonomous.
Figure 4: Pre–B cells have impaired cell cycling in the absence of cyclin D3.
Figure 5: Complete abrogation of B cell differentiation after combined loss of cyclins D2 and D3.
Figure 6: Upregulation of cyclin D3 is dependent on the pre-BCR and is independent of BLNK, whereas induction of Ccnd3 mRNA is dependent on the common γ-chain.
Figure 7: The pre-BCR inhibits proteasomal degradation of cyclin D3 in a tyrosine kinase–dependent way.

Similar content being viewed by others

References

  1. Singh, H., Medina, K.L. & Pongubala, J.M. Contingent gene regulatory networks and B cell fate specification. Proc. Natl. Acad. Sci. USA 102, 4949–4953 (2005).

    Article  CAS  Google Scholar 

  2. Karasuyama, H., Kudo, A. & Melchers, F. The proteins encoded by the VpreB and λ5 pre-B cell-specific genes can associate with each other and with μ heavy chain. J. Exp. Med. 172, 969–972 (1990).

    Article  CAS  Google Scholar 

  3. Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  Google Scholar 

  4. Melchers, F. The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nat. Rev. Immunol. 5, 578–584 (2005).

    Article  CAS  Google Scholar 

  5. Kitamura, D. & Rajewsky, K. Targeted disruption of mu chain membrane exon causes loss of heavy-chain allelic exclusion. Nature 356, 154–156 (1992).

    Article  CAS  Google Scholar 

  6. Hess, J. et al. Induction of pre-B cell proliferation after de novo synthesis of the pre-B cell receptor. Proc. Natl. Acad. Sci. USA 98, 1745–1750 (2001).

    Article  CAS  Google Scholar 

  7. Nagaoka, H. et al. Ras mediates effector pathways responsible for pre-B cell survival, which is essential for the developmental progression to the late pre-B cell stage. J. Exp. Med. 192, 171–182 (2000).

    Article  CAS  Google Scholar 

  8. Kraus, M. et al. Interference with immunoglobulin (Ig)α immunoreceptor tyrosine-based activation motif (ITAM) phosphorylation modulates or blocks B cell development, depending on the availability of an Igβ cytoplasmic tail. J. Exp. Med. 194, 455–469 (2001).

    Article  CAS  Google Scholar 

  9. Jumaa, H. et al. Abnormal development and function of B lymphocytes in mice deficient for the signaling adaptor protein SLP-65. Immunity 11, 547–554 (1999).

    Article  CAS  Google Scholar 

  10. Jumaa, H., Mitterer, M., Reth, M. & Nielsen, P.J. The absence of SLP65 and Btk blocks B cell development at the preB cell receptor-positive stage. Eur. J. Immunol. 31, 2164–2169 (2001).

    Article  CAS  Google Scholar 

  11. Saijo, K. et al. Essential role of Src-family protein tyrosine kinases in NF-κB activation during B cell development. Nat. Immunol. 4, 274–279 (2003).

    Article  CAS  Google Scholar 

  12. Peschon, J.J. et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960 (1994).

    Article  CAS  Google Scholar 

  13. Vosshenrich, C.A., Cumano, A., Muller, W., Di Santo, J.P. & Vieira, P. Pre-B cell receptor expression is necessary for thymic stromal lymphopoietin responsiveness in the bone marrow but not in the liver environment. Proc. Natl. Acad. Sci. USA 101, 11070–11075 (2004).

    Article  CAS  Google Scholar 

  14. Waskow, C., Paul, S., Haller, C., Gassmann, M. & Rodewald, H.R. Viable c-Kit(W/W) mutants reveal pivotal role for c-kit in the maintenance of lymphopoiesis. Immunity 17, 277–288 (2002).

    Article  CAS  Google Scholar 

  15. Sitnicka, E. et al. Complementary signaling through flt3 and interleukin-7 receptor α is indispensable for fetal and adult B cell genesis. J. Exp. Med. 198, 1495–1506 (2003).

    Article  CAS  Google Scholar 

  16. Ciemerych, M.A. & Sicinski, P. Cell cycle in mouse development. Oncogene 24, 2877–2898 (2005).

    Article  CAS  Google Scholar 

  17. Bouchard, C. et al. Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J. 18, 5321–5333 (1999).

    Article  CAS  Google Scholar 

  18. Martino, A., Holmes, J.H., IV, Lord, J.D., Moon, J.J. & Nelson, B.H. Stat5 and Sp1 regulate transcription of the cyclin D2 gene in response to IL-2. J. Immunol. 166, 1723–1729 (2001).

    Article  CAS  Google Scholar 

  19. Guttridge, D.C., Albanese, C., Reuther, J.Y., Pestell, R.G. & Baldwin, A.S., Jr. NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell. Biol. 19, 5785–5799 (1999).

    Article  CAS  Google Scholar 

  20. Zhao, F., Vilardi, A., Neely, R.J. & Choi, J.K. Promotion of cell cycle progression by basic helix-loop-helix E2A. Mol. Cell. Biol. 21, 6346–6357 (2001).

    Article  CAS  Google Scholar 

  21. Matsumura, I. et al. Transcriptional regulation of the cyclin D1 promoter by STAT5: its involvement in cytokine-dependent growth of hematopoietic cells. EMBO J. 18, 1367–1377 (1999).

    Article  CAS  Google Scholar 

  22. Casanovas, O., Jaumot, M., Paules, A.B., Agell, N. & Bachs, O. P38SAPK2 phosphorylates cyclin D3 at Thr-283 and targets it for proteasomal degradation. Oncogene 23, 7537–7544 (2004).

    Article  CAS  Google Scholar 

  23. Diehl, J.A., Zindy, F. & Sherr, C.J. Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev. 11, 957–972 (1997).

    Article  CAS  Google Scholar 

  24. Germain, D., Russell, A., Thompson, A. & Hendley, J. Ubiquitination of free cyclin D1 is independent of phosphorylation on threonine 286. J. Biol. Chem. 275, 12074–12079 (2000).

    Article  CAS  Google Scholar 

  25. Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477–491 (2004).

    Article  CAS  Google Scholar 

  26. Akashi, K. et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood 101, 383–389 (2003).

    Article  CAS  Google Scholar 

  27. Dias, S., Silva, H., Jr., Cumano, A. & Vieira, P. Interleukin-7 is necessary to maintain the B cell potential in common lymphoid progenitors. J. Exp. Med. 201, 971–979 (2005).

    Article  CAS  Google Scholar 

  28. Chiles, T.C. Regulation and function of cyclin D2 in B lymphocyte subsets. J. Immunol. 173, 2901–2907 (2004).

    Article  CAS  Google Scholar 

  29. Solvason, N. et al. Cyclin D2 is essential for BCR-mediated proliferation and CD5 B cell development. Int. Immunol. 12, 631–638 (2000).

    Article  CAS  Google Scholar 

  30. Ciemerych, M.A. et al. Development of mice expressing a single D-type cyclin. Genes Dev. 16, 3277–3289 (2002).

    Article  CAS  Google Scholar 

  31. Fleming, H.E. & Paige, C.J. Cooperation between IL-7 and the pre-B cell receptor: a key to B cell selection. Semin. Immunol. 14, 423–430 (2002).

    Article  CAS  Google Scholar 

  32. Kondo, M. et al. Functional participation of the IL-2 receptor γ chain in IL-7 receptor complexes. Science 263, 1453–1454 (1994).

    Article  CAS  Google Scholar 

  33. Fleming, H.E. & Paige, C.J. Pre-B cell receptor signaling mediates selective response to IL-7 at the pro-B to pre-B cell transition via an ERK/MAP kinase-dependent pathway. Immunity 15, 521–531 (2001).

    Article  CAS  Google Scholar 

  34. Pleiman, C.M., Hertz, W.M. & Cambier, J.C. Activation of phosphatidylinositol-3′ kinase by Src-family kinase SH3 binding to the p85 subunit. Science 263, 1609–1612 (1994).

    Article  CAS  Google Scholar 

  35. Beitz, L.O., Fruman, D.A., Kurosaki, T., Cantley, L.C. & Scharenberg, A.M. SYK is upstream of phosphoinositide 3-kinase in B cell receptor signaling. J. Biol. Chem. 274, 32662–32666 (1999).

    Article  CAS  Google Scholar 

  36. Glassford, J. et al. Phosphatidylinositol 3-kinase is required for the transcriptional activation of cyclin D2 in BCR activated primary mouse B lymphocytes. Eur. J. Immunol. 35, 2748–2761 (2005).

    Article  CAS  Google Scholar 

  37. Xiong, Y., Menninger, J., Beach, D. & Ward, D.C. Molecular cloning and chromosomal mapping of CCND genes encoding human D-type cyclins. Genomics 13, 575–584 (1992).

    Article  CAS  Google Scholar 

  38. Chow, K.N., Starostik, P. & Dean, D.C. The Rb family contains a conserved cyclin-dependent-kinase-regulated transcriptional repressor motif. Mol. Cell. Biol. 16, 7173–7181 (1996).

    Article  CAS  Google Scholar 

  39. Geng, Y. et al. Deletion of the p27Kip1 gene restores normal development in cyclin D1-deficient mice. Proc. Natl. Acad. Sci. USA 98, 194–199 (2001).

    Article  CAS  Google Scholar 

  40. Ganter, B., Fu, S. & Lipsick, J.S. D-type cyclins repress transcriptional activation by the v-Myb but not the c-Myb DNA-binding domain. EMBO J. 17, 255–268 (1998).

    Article  CAS  Google Scholar 

  41. Carthon, B.C. et al. Genetic replacement of cyclin D1 function in mouse development by cyclin D2. Mol. Cell. Biol. 25, 1081–1088 (2005).

    Article  CAS  Google Scholar 

  42. Flemming, A., Brummer, T., Reth, M. & Jumaa, H. The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. Nat. Immunol. 4, 38–43 (2003).

    Article  CAS  Google Scholar 

  43. Miller, J.P. et al. The earliest step in B lineage differentiation from common lymphoid progenitors is critically dependent upon interleukin 7. J. Exp. Med. 196, 705–711 (2002).

    Article  CAS  Google Scholar 

  44. Kikuchi, K., Lai, A.Y., Hsu, C.L. & Kondo, M. IL-7 receptor signaling is necessary for stage transition in adult B cell development through up-regulation of EBF. J. Exp. Med. 201, 1197–1203 (2005).

    Article  CAS  Google Scholar 

  45. Sicinska, E. et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4, 451–461 (2003).

    Article  CAS  Google Scholar 

  46. Di Santo, J.P. et al. The common cytokine receptor gamma chain and the pre-T cell receptor provide independent but critically overlapping signals in early α/β T cell development. J. Exp. Med. 189, 563–574 (1999).

    Article  CAS  Google Scholar 

  47. Barata, J.T., Cardoso, A.A., Nadler, L.M. & Boussiotis, V.A. Interleukin-7 promotes survival and cell cycle progression of T-cell acute lymphoblastic leukemia cells by down-regulating the cyclin-dependent kinase inhibitor p27kip1. Blood 98, 1524–1531 (2001).

    Article  CAS  Google Scholar 

  48. Parrish-Novak, J. et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408, 57–63 (2000).

    Article  CAS  Google Scholar 

  49. Schneider, P. et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J. Exp. Med. 189, 1747–1756 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Kee for discussions and critical reading of the manuscript; H. Singh (University of Chicago, Chicago, Illinois) for Irf4−/−Irf8−/− mice; M. Nussenzweig (Rockefeller University, New York, New York) for Cd79b−/− mice; F. Meng for technical assistance; and R. Duggan and J. Marvin for cell-sorting services. Supported by the National Institutes of Health (RO1CA105129 to I.A. and RO1GM52736 to M.R.C.), the Sidney Kimmel Foundation for Cancer Research (I.A.), the Arthritis Foundation (M.R.C.), the University of Chicago Committee on Immunology (A.B.C.) and the University of Chicago Molecular Biology (C.M.S. and S.E.P.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcus R Clark or Iannis Aifantis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Early hematopoietic development occurs normally in the absence of cyclin D3. (PDF 1322 kb)

Supplementary Fig. 2

IL-7 induces transcription of cyclin D2 but not cyclin D3. (PDF 281 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, A., Sawai, C., Sicinska, E. et al. A unique function for cyclin D3 in early B cell development. Nat Immunol 7, 489–497 (2006). https://doi.org/10.1038/ni1324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1324

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing