Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection

Abstract

Baculovirus inhibitor of apoptosis repeat-containing 1 (Birc1) proteins have homology to several germline-encoded receptors of the innate immune system. However, their function in immune surveillance is not clear. Here we describe a Birc1e-dependent signaling pathway that restricted replication of the intracellular pathogen Legionella pneumophila in mouse macrophages. Translocation of bacterial products into host-cell cytosol was essential for Birc1e-mediated control of bacterial replication. Caspase-1 was required for Birc1e-dependent antibacterial responses ex vivo in macrophages and in a mouse model of Legionnaires' disease. The interleukin 1β converting enzyme–protease-activating factor was necessary for L. pneumophila growth restriction, but interleukin 1β was not required. These results establish Birc1e as a nucleotide-binding oligomerization–leucine-rich repeat protein involved in the detection and control of intracellular L. pneumophila.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Birc1e-mediated caspase-1-dependent cell death of HEK293 cells.
Figure 2: Dot-Icm–dependent Birc1e response in HEK293 cells.
Figure 3: Impaired L. pneumophila–induced caspase-1 activation in A/J macrophages.
Figure 4: Birc1e regulation of L. pneumophila–induced activation in macrophages.
Figure 5: Birc1e activation is independent of L. pneumophila replication and trafficking.
Figure 6: Caspase-1 dependency of L. pneumophila growth restriction in macrophages.
Figure 7: Adapter proteins involved in Birc1e-mediated restriction of L. pneumophila growth.

Similar content being viewed by others

References

  1. Roy, N. et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80, 167–178 (1995).

    Article  CAS  Google Scholar 

  2. Diez, E., Yaraghi, Z., MacKenzie, A. & Gros, P. The neuronal apoptosis inhibitory protein (Naip) is expressed in macrophages and is modulated after phagocytosis and during intracellular infection with Legionella pneumophila. J. Immunol. 164, 1470–1477 (2000).

    Article  CAS  Google Scholar 

  3. Miller, L.K. An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol. 9, 323–328 (1999).

    Article  CAS  Google Scholar 

  4. Inohara, N. & Nunez, G. NODs: intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol. 3, 371–382 (2003).

    Article  CAS  Google Scholar 

  5. Viala, J., Sansonetti, P. & Philpott, D.J. Nods and 'intracellular' innate immunity. C. R. Biol. 327, 551–555 (2004).

    Article  CAS  Google Scholar 

  6. Tschopp, J., Martinon, F. & Burns, K. NALPs: a novel protein family involved in inflammation. Nat. Rev. Mol. Cell Biol. 4, 95–104 (2003).

    Article  CAS  Google Scholar 

  7. Ting, J.P. & Davis, B.K. Caterpiller: A novel gene family important in immunity, cell death, and diseases. Annu. Rev. Immunol. 23, 387–414 (2005).

    Article  CAS  Google Scholar 

  8. Roy, C.R. & Tilney, L.G. The road less traveled: transport of Legionella to the endoplasmic reticulum. J. Cell Biol. 158, 415–419 (2002).

    Article  CAS  Google Scholar 

  9. Yamamoto, Y., Klein, T.W., Newton, C.A., Widen, R. & Friedman, H. Growth of Legionella pneumophila in thioglycolate-elicited peritoneal macrophages from A/J mice. Infect. Immun. 56, 370–375 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Beckers, M.C., Yoshida, S., Morgan, K., Skamene, E. & Gros, P. Natural resistance to infection with Legionella pneumophila: chromosomal localization of the Lgn1 susceptibility gene. Mamm. Genome 6, 540–545 (1995).

    Article  CAS  Google Scholar 

  11. Dietrich, W.F., Damron, D.M., Isberg, R.R., Lander, E.S. & Swanson, M.S. Lgn1, a gene that determines susceptibility to Legionella pneumophila, maps to mouse chromosome 13. Genomics 26, 443–450 (1995).

    Article  CAS  Google Scholar 

  12. Diez, E. et al. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat. Genet. 33, 55–60 (2003).

    Article  CAS  Google Scholar 

  13. Wright, E.K. et al. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr. Biol. 13, 27–36 (2003).

    Article  CAS  Google Scholar 

  14. Sanna, M.G. et al. IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition. Mol. Cell. Biol. 22, 1754–1766 (2002).

    Article  CAS  Google Scholar 

  15. Vogel, J.P., Andrews, H.L., Wong, S.K. & Isberg, R.R. Conjugative transfer by the virulence system of Legionella pneumophila. Science 279, 873–876 (1998).

    Article  CAS  Google Scholar 

  16. Segal, G., Purcell, M. & Shuman, H.A. Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc. Natl. Acad. Sci. USA 95, 1669–1674 (1998).

    Article  CAS  Google Scholar 

  17. Poyet, J.L. et al. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J. Biol. Chem. 276, 28309–28313 (2001).

    Article  CAS  Google Scholar 

  18. Smolewski, P. et al. Detection of caspases activation by fluorochrome-labeled inhibitors: multiparameter analysis by laser scanning cytometry. Cytometry 44, 73–82 (2001).

    Article  CAS  Google Scholar 

  19. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267, 2000–2003 (1995).

    Article  CAS  Google Scholar 

  20. Berger, K.H. & Isberg, R.R. Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol. Microbiol. 7, 7–19 (1993).

    Article  CAS  Google Scholar 

  21. Zuckman, D.M., Hung, J.B. & Roy, C.R. Pore-forming activity is not sufficient for Legionella pneumophila phagosome trafficking and intracellular growth. Mol. Microbiol. 32, 990–1001 (1999).

    Article  CAS  Google Scholar 

  22. Coers, J. et al. Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth. Mol. Microbiol. 38, 719–736 (2000).

    Article  CAS  Google Scholar 

  23. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    Article  CAS  Google Scholar 

  24. Derre, I. & Isberg, R.R. Macrophages from mice with the restrictive Lgn1 allele exhibit multifactorial resistance to Legionella pneumophila. Infect. Immun. 72, 6221–6229 (2004).

    Article  CAS  Google Scholar 

  25. Hersh, D. et al. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl. Acad. Sci. USA 96, 2396–2401 (1999).

    Article  CAS  Google Scholar 

  26. Chen, Y., Smith, M.R., Thirumalai, K. & Zychlinsky, A. A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J. 15, 3853–3860 (1996).

    Article  CAS  Google Scholar 

  27. Molmeret, M. et al. Activation of caspase-3 by the Dot/Icm virulence system is essential for arrested biogenesis of the Legionella-containing phagosome. Cell. Microbiol. 6, 33–48 (2004).

    Article  CAS  Google Scholar 

  28. Maier, J.K. et al. The neuronal apoptosis inhibitory protein is a direct inhibitor of caspases 3 and 7. J. Neurosci. 22, 2035–2043 (2002).

    Article  CAS  Google Scholar 

  29. Damiano, J.S., Newman, R.M. & Reed, J.C. Multiple roles of CLAN (caspase-associated recruitment domain, leucine-rich repeat, and NAIP CIIA HET-E, and TP1-containing protein) in the mammalian innate immune response. J. Immunol. 173, 6338–6345 (2004).

    Article  CAS  Google Scholar 

  30. Edelstein, P.H., Weiss, W.J. & Edelstein, M.A. Activities of tigecycline (GAR-936) against Legionella pneumophila in vitro and in guinea pigs with L. pneumophila pneumonia. Antimicrob. Agents Chemother. 47, 533–540 (2003).

    Article  CAS  Google Scholar 

  31. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  32. Kagan, J.C., Stein, M.P., Pypaert, M. & Roy, C.R. Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J. Exp. Med. 199, 1201–1211 (2004).

    Article  CAS  Google Scholar 

  33. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

    Article  CAS  Google Scholar 

  34. Zamboni, D.S. & Rabinovitch, M. Nitric oxide partially controls Coxiella burnetii phase II infection in mouse primary macrophages. Infect. Immun. 71, 1225–1233 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Archer, S. Shin and J. Galán for discussions and advice. Supported by the National Institutes of Health (AI48770 and AI41699 to C.R.R., AI062017 to R.E.V., and AI049987 to W.F.D.), the Pew Latin American Fellows program (D.S.Z.), the Crohn's and Colitis Foundation of America (K.S.K.), the Eli and Edythe L. Broad Foundation (K.S.K.) and the Howard Hughes Medical Institute (R.A.F. and W.F.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig R Roy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Caspase-1-dependency of L. pneumophila growth restriction. (PDF 29 kb)

Supplementary Fig. 2

Co-immunoprecipitation of Ipaf and Birc1e. (PDF 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamboni, D., Kobayashi, K., Kohlsdorf, T. et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7, 318–325 (2006). https://doi.org/10.1038/ni1305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1305

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing